K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 3 2016

kết quả chắc chắn 100 phần trăm là =1 đó

10 tháng 3 2016

Giá trị nhỏ nhất của biểu thức  \(A_{min}=4\)

25 tháng 3 2019

Giả sử phương trình đã cho có 3 nghiệm
 

Khi đó

Suy ra  

Xét hàm số: 

Chọn D.

 

14 tháng 3 2017

Đáp án là D

20 tháng 2 2016

Các bạn giải thích giùm tớ luôn nhé

10 tháng 3 2016

(a+b)(1/a+1/b)=1+a/b+b/a+1

                    =2+(a^2+b^2)/(a*b)

vì a^2+b^2>0; a*b>0

=>Qmin=2

27 tháng 10 2019

19 tháng 5 2022

vì (a-1)2 ≥ 0 nên a2 +1 ≥ 2a  ∀mọi x    (1)

vì (b-1)2 ≥ 0 nên b2 +1 ≥ 2b ∀ mọi x      (2)

từ 1 và 2 ⇒ a2+b≥ 2a+2b

               ⇒ A≥ 2(a+b)=2

dấu''=' xảy ra khi a=b=1/2

28 tháng 5 2018

Chọn B.

Ta có 6 ≤ log2(a + 1) + log2(b + 1) = log2[(a + 1)(b + 1) ]

Suy ra:  hay ( a + b) 2 + 4( a + b) + 4 ≥ 256

Tương đương: (a + b) 2 + 4(a + b) - 252 ≥ 0

Suy ra: a + b ≥ 14

26 tháng 3 2017

Chọn C

5 tháng 10 2019

Để phương trình có nghiệm thì : 

\(\Delta_x=a^2-\left(2a^2+b^2-5\right)\ge0\)

\(\Leftrightarrow a^2+b^2\le5\)

\(\Leftrightarrow\left(a+b\right)^2\le5+2ab\)

\(\Leftrightarrow ab\ge\frac{\left(a+b\right)^2-5}{2}\)

Ta có :

\(P=\left(a+1\right)\left(b+1\right)=ab+a+b+1\)

\(\ge\frac{\left(a+b\right)^2-5}{2}+\left(a+b\right)+1=\frac{1}{2}\left(a+b+1\right)^2-2\ge-2\)

Dấu " = " xảy ra khi \(\hept{\begin{cases}a=-2\\b=1\end{cases}}\)