-15 ( x - 2 ) + 7 ( 3 -x ) = 7.
Giúp Mình với Nhé
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\dfrac{3}{7}\left(-\dfrac{15}{13}-\dfrac{11}{13}-1\right)=\dfrac{3}{7}\left(-2-1\right)=-\dfrac{9}{7}\)
Bài 1:
a) \(x.\dfrac{3}{4}=\dfrac{9}{14}\)
\(\Rightarrow x=\dfrac{9}{14}:\dfrac{3}{4}\)
\(\Rightarrow x=\dfrac{6}{7}\)
b) \(x:\dfrac{5}{9}=\dfrac{3}{10}\)
\(\Rightarrow x=\dfrac{3}{10}.\dfrac{5}{9}\)
\(\Rightarrow x=\dfrac{1}{6}\)
\(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{\left(2x+1\right).\left(2x+3\right)}=\frac{15}{93}\)
\(2.\left(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{\left(2x+1\right).\left(2x+3\right)}\right)=2.\frac{15}{93}\)
\(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{\left(2x+1\right).\left(2x+3\right)}=\frac{30}{93}\)
\(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{2x+1}-\frac{1}{2x+3}=\frac{10}{31}\)
\(\frac{1}{3}-\frac{1}{2x+3}=\frac{10}{31}\)
\(\frac{1}{2x+3}=\frac{1}{3}-\frac{10}{31}\)
\(\frac{1}{2x+3}=\frac{1}{93}\)
=> 2x + 3 = 93
=> 2x = 93 - 3
=> 2x = 90
=> x = 90 : 2
=> x = 45
Vậy x = 45
15(x-2)+7(3-x)=7
15x-30+21-7x=7
(15x-7x) + (30-21)=7
8x+ 9=7
8x =7-9
8x =-2
x=-2 :8
x = - 0,25
-15x-(-30)+21-7x=7
=>-15x+30+21-7x=7
=>-15x+51-7x=7
=>-15x-7x=7-51=-44
=>(-15-7)x=-44
=>-22x=-44
=>x=-44:(-22)
=>x=2
Vậy x=2
3/25 x ( 15/7 - 2/7 ) + 3/7 x 1/25
= 3/25 x 13/7 + 3/7 x 1/25
= (3 x 13/7 + 3/7 ) x 1/25
= 42/7 x 1/25
= 6 x 1/25
= 6/25
\(\dfrac{3}{25}\times\dfrac{15}{7}+\dfrac{3}{7}\times\dfrac{1}{25}-\dfrac{2}{7}\times\dfrac{3}{25}\)
\(=\dfrac{3}{25}\times\left(\dfrac{15}{7}-\dfrac{2}{7}\right)+\dfrac{3}{7}\times\dfrac{1}{25}\)
\(=\dfrac{3}{25}\times\dfrac{13}{7}+\dfrac{3}{7}\times\dfrac{1}{25}\)
\(=\dfrac{3\times13}{25\times7}+\dfrac{3\times1}{7\times25}\)
\(=\dfrac{39}{175}+\dfrac{3}{175}\)
\(=\dfrac{39+3}{175}\)
\(=\dfrac{42}{175}\)
\(=\dfrac{6}{25}\)
Ta có: \(-15\left(x-2\right)+7\left(3-x\right)=7\)
\(\Leftrightarrow-15x+30+21-7x=7\)
\(\Leftrightarrow-22x+51=7\)
\(\Leftrightarrow-22x=-44\)
\(\Leftrightarrow x=2\)