K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 12 2021

\(a,\) Vì M là trung điểm AB cà DH nên AHBD là hình bình hành

Mà \(\widehat{AHB}=90^0\) (đường cao AH) nên AHBD là hcn

\(b,\) Vì AHBD là hcn nên \(AD=BH;AD\text{//}HB\)

Mà \(BH=HE\Rightarrow AD=HE;AD\text{//}HE\)

Do đó: ADHE là hình bình hành

\(c,\) Vì ADHE là hbh mà N là giao AH và DE nên N là trung điểm AH và DE

Mà M là trung điểm AB nên MN là đtb \(\Delta ABH\)

Do đó \(MN//BH\) hay \(MN//BC\)

Ta có N là trung điểm AH và K là trung điểm AC nên NK là đtb \(\Delta ACH\)

Do đó \(NK//HC\) hay \(NK//BC\)

Do đó theo định lí Ta lét thì MN trùng NK hay M,N,K thẳng hàng

22 tháng 12 2021

a: Xét tứ giác AHBD có

M là trung điểm của AB

M là trung điểm của HD

Do đó: AHBD là hình bình hành

mà \(\widehat{AHB}=90^0\)

nên AHBD là hình chữ nhật

a: Xét tứ giác AHBD có

M là trung điểm của AB

M là trung điểm của HD

Do đó: AHBD là hình bình hành

mà \(\widehat{AHB}=90^0\)

nên AHBD là hình chữ nhật

b: Xét ΔAEB có 

H là trung điểm của EB

M là trung điểm của AB

Do đó: HM là đường trung bình

=>HM//AE và HM=AE/2

hay HD//AE và HD=AE

hay ADHE là hình bình hành

13 tháng 12 2017

A C B H M D E F I J

a) Xét tứ giác AHBD có MB = MA; MD = MH nên nó là hình bình hành (dhnb). 

Lại có \(\widehat{BHA}=90^o\) nên AHBD là hình chữ nhật (dhnb).

b) Do AHBD là hình chữ nhật nên AD song song và bằng HB.

Lại có HB = HE nên AD song song và bằng HE.

Xét tứ giác ADHE có AD song song và bằng HE nên nó là hình bình hành (dhnb)

c) Lấy J là trung điểm AF.

Do AB và EF cùng vuông góc với AC nên BAFE là hình thang vuông.

Lại có H, J là trung điểm các cạnh bên nên HJ là đường trung bình của hình thang.

Vậy nên HJ // AB // EF hay \(HJ\perp AF\)  

Xét tam giác AHF có HJ là trung tuyến đồng thời đường cao nên nó là tam giác cân.

Vậy thì HA = HF.

d) Xét tam giác vuông EFC có FI là trung tuyến ứng với cạnh huyền nên FI = IC hay \(\widehat{IFC}=\widehat{ICF}\)

Lại có \(\widehat{ICF}=\widehat{BAH}\) (Cùng phụ với góc HAC)

Nên \(\widehat{IFC}=\widehat{BAH}\)

Ta cũng có \(\widehat{HFE}=\widehat{JHF}\)  (Hai góc so le trong)

\(\widehat{JHF}=\widehat{JHA}\) (HJ là phân giác)

\(\widehat{JHA}=\widehat{BAH}\)  (Hai góc so le trong)

nên \(\widehat{HFE}=\widehat{BAH}\)

Vậy thì \(\widehat{IFC}=\widehat{HFE}\)

Từ đó ta có : \(\widehat{IFC}+\widehat{EFI}=\widehat{HFE}+\widehat{EFI}\Rightarrow\widehat{HFI}=\widehat{EFC}=90^o\)

Hay \(HF\perp FI\)

20 tháng 12 2022

a: Xét tứ giác ADCH có

M là trung điểm chung của AC và HD

góc AHC=90 độ

Do đó: ADCH là hình chữ nhật

b: Xét tứ giác ADHE có

AD//HE

AD=HE

Do đó: ADHE là hình bình hành

 

a: Xét tứ giác AHCD có

M là trung điểm chung của AC và HD

góc AHC=90 độ

=>AHCD là hình chữ nhật

b: Xét tứ giác ADHE có

AD//HE

AD=HE

=>ADHE là hình bình hành

 

16 tháng 12 2022

Sửa đề; N là giao của ED và AH

a: Xét tứ giác AHBD có

M là trung điểm chung của AB và HD

góc AHB=90 độ

DO đó; AHBDlà hình chữ nhật

b: Xét tứ giác AEHD có

AD//EH

AD=EH

Do đó:AEHD là hình bình hành

=>AH cắt ED tại trung điểm của mỗi đường

=>N là trung điểm của AH

c: Xét ΔAHB có AM/AB=AH/AH

nên MN//HB

=>MN//BC

Xét ΔABC có AM/AB=AK/AC

nên MK//BC

mà MN//BC

nên M,N,K thẳng hàng

17 tháng 12 2021

a: Xét tứ giác AHBD có 

M là trung điểm của AB

M là trung điểm của HD

Do đó: AHBD là hình bình hành

mà \(\widehat{HAB}=90^0\)

nên AHBD là hình chữ nhật

16 tháng 12 2023

a: Xét tứ giác AHBD có

O là trung điểm chung của AB và HD

=>AHBD là hình bình hành

Hình bình hành AHBD có \(\widehat{AHB}=90^0\)

nên AHBD là hình chữ nhật

b: Ta có: AHBD là hình chữ nhật

=>AH//BD và AH=BD

Ta có: AH//BD

Q\(\in\)AH

Do đó: QH//DB

Ta có: AH=BD

AH=HQ

Do đó: BD=HQ

Xét tứ giác BDHQ có

BD//HQ

BD=HQ

Do đó: BDHQ là hình bình hành

c: Xét tứ giác ABQP có

H là trung điểm chung của AQ và BP

=>ABQP là hình bình hành

Hình bình hành ABQP có AQ\(\perp\)BP

nên ABQP là hình thoi

d: Ta có: ΔKAB vuông tại K

mà KO là đường trung tuyến

nên \(KO=\dfrac{AB}{2}\)

mà AB=HD(AHBD là hình chữ nhật)

nên \(KO=\dfrac{HD}{2}\)

Xét ΔKHD có

KO là đường trung tuyến

\(KO=\dfrac{HD}{2}\)

Do đó: ΔKHD vuông tại K

=>KH\(\perp\)KD

16 tháng 12 2023

sai đề kia

a: Xét tứ giác AHCD có

M là trung điểm chung của AC và HD

\(\widehat{AHC}=90^0\)

Do đó: AHCD là hình chữ nhật

b: ΔABC cân tại A

mà AH là đường cao

nên H là trung điểm của BC

Xét ΔABC có

H,M lần lượt là trung điểm của CB,CA

=>HM làđường trung bình

=>HM//AB và HM=AB/2

mà HM=HD/2

nên AB=HD

c: 

AHCD là hình bình hành

=>AD//CH và AD=CH

AD//CH

=>AD//BH

AD=CH

CH=BH

Do đó: AD=BH

Xét tứ giác ABHD có 

AD//BH

AD=BH

Do đó: ABHD là hình bình hành

8 tháng 10 2023

vẽ hình pls

 

 

29 tháng 12 2023

loading... a) Do OH = OK (gt)

⇒ O là trung điểm của KH

Do AH là đường cao của ∆ABC (gt)

⇒ AH ⊥ BC

⇒ AH ⊥ HM

⇒ ∠AHM = 90⁰

Tứ giác AHMK có:

O là trung điểm của AM (gt)

O là trung điểm của KH (cmt)

⇒ AHMK là hình bình hành

Mà ∠AHM = 90⁰ (cmt)

⇒ AHMK là hình chữ nhật

b) Do AHMK là hình chữ nhật (cmt)

⇒ AK = MH và AK // MH

Do MF = MH (gt)

⇒ AK = MF

Do AK // MH (cmt)

⇒ AK // MF

Tứ giác AMFK có:

AK // MF (cmt)

AK = MF (cmt)

⇒ AMFK là hình bình hành

c) Do AHMK là hình chữ nhật (cmt)

⇒ OA = OH = OM = OK = AM : 2

∆HQK vuông tại Q có OQ là đường trung tuyến

⇒ OQ = OH = HK : 2

Mà OH = OM = OA (cmt)

⇒ OQ = OM = OA = AM : 2

∆AQM có:

OQ là đường trung tuyến (do O là trung điểm của AM)

Mà OQ = OA = OM = AM : 2 (cmt)

⇒ ∆AQM vuông tại Q

⇒ MQ ⊥ AQ