Từ A ở bên ngoài đường tròn (O) vẽ tiếp tuyến AB với đường tròn ( B là tiếp điểm). Dây BC khác đường kính vuông góc với OA tại H.
a.Chứng minh rằng AC là tiếp tuyến của đường tròn (O)
b. Qua A vẽ cắt tuyến ADE của (O) ( D nằm giữa A và E). Gọi I là trung điểm của DE. Chứng minh rằng bổn điểm A; B: O: I cùng thuộc một đường tròn Giúp mình vs mn mình đang cần gấp đó ạ
a: Xét ΔOBA và ΔOCA có
OB=OC
\(\widehat{BOA}=\widehat{COA}\)
OA chung
Do đó: ΔOBA=ΔOCA
=>AC là tiếp tuyến của (O)