Cho tổng S=3^0+3^2+3^4+3^6+......+3^2002
Khi đó 8S-2^2004-1= ? Giúp mình với các bạn ơi!!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề sai nhé: phải là 8S-..+1 nhé
Có: \(3^2.S=3^2+3^4+3^6+...+3^{2004}\)
\(\Rightarrow3^2S-S=3^{2004}-1\)\(\Leftrightarrow8S=3^{2004}-1\Leftrightarrow8S-3^{2004}+1=0\)
Ta có: S = 30 + 32 + 34 + 36 + … + 32002 (1)
Nhân cả hai vế của (1) cho 9, ta được:
9S = 32(30 + 32 + 34 + 36 + … + 32002)
9S = 32 + 34 + 36 + 38 + … + 32004 (2)
Lấy (2) - (1), ta được:
9S - S = (32 + 34 + 36 + 38 + … + 32004) - (30 + 32 + 34 + 36 + … + 32002)
8S = 32004 - 30
8S = 32004 - 1
Khi đó:
8S - 32004 - 1 = 32004 - 1 - 32004 - 1
8S - 32004 - 1 = -2
S= 3^0+3^2+3^4+...+3^2002
<=> 9S=3^2+3^4+3^6+...+3^2004
<=>9S-S=(3^2+3^4+3^6+...+3^2004)-(3^0+3^2+3^4+...+3^2002)
<=>8S=3^2004-1
Khi đó: 8S-3^2004-1=3^2004-1-3^2004-1=0-1-1=-2
S=\(3^0+3^2+3^4+...+3^{2002}\)
\(3^2\cdot S=3^2+3^4+3^6+...+3^{2004}\)
9S-S=\(\left(3^2+3^4+3^6+...+3^{2004}\right)-\left(3^0+3^2+3^4+...+3^{2002}\right)\)
8S=\(3^{2004}-3^0\)
8S-\(3^{2004}-1\)=\(3^{2004}-1-3^{2004}-1\)=-2
Số số hạng của A là:
(2006 - 0) : 2 + 1 = 1004 (số)
Nếu ta nhóm 3 số 1 ở A thì có số nhóm là:
1004 : 3 = 334 (dư 2)
Ta có:
A = (1 + 3^2) + (3^4 + 3^6 + 3^8) +...+ (3^2002 + 3^2004 + 3^2006)
A = (1 + 3^2) + 3^4(1 + 3^2 + 3^4) +...+ 3^2002(1 + 3^2 + 3^4)
A = 10 + 3^4.13 +...+ 3^2002.13
A = 10 + 13(3^4 +...+ 3^2002)
Vì 13 chia hết cho 13 nên 13(3^4 +...+ 3^2002) chia hết cho 13, mà 10 chia 13 dư 10 nên 10 + 13(3^4 +...+ 3^2002) chia 13 dư 10 hay A chia 13 dư 10 (ĐPCM)
S=3^0+3^2+3^4+..+3^2002
=1+3^2+3^4+...+3^2002
3^2S=3^2+3^4+3^6+...+3^2004
9S-S=3^2+3^4+3^6+...+3^2004-1-3^2-3^4-...-3^2002
8S=3^2004-1
S=(3^2004-1):8