Tìm x, y, z biết: 35x = 14y = 10z và x+z-y = 20
Giúp mình với!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(15x=10y=6z\)
\(\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}\)
Áp dụng t/c dtsbn:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x+y+z}{2+3+5}=\dfrac{20}{10}=2\)
\(\Rightarrow\left\{{}\begin{matrix}x=2.2=4\\y=2.3=6\\z=2.5=10\end{matrix}\right.\)
4x=8y=10z
=> x/10=y/5=z/4
Ap dung..
x/10=y/5=z/4=x+y-z/10+5-4=11/11=1
=>x=10
y=5
z=4
4x = 8y = 10z
=> \(\frac{4x}{40}=\frac{8y}{40}=\frac{10z}{40}\)
=> \(\frac{x}{10}=\frac{y}{5}=\frac{z}{4}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có :
\(\frac{x}{10}=\frac{y}{5}=\frac{z}{4}=\frac{x+y-z}{10+5-4}=\frac{x+y-z}{11}\)
Mà x + y - z = 11
=> \(\frac{x}{10}=\frac{y}{5}=\frac{z}{4}=\frac{11}{11}=1\)
=> x = 10 ; y = 5 ; z = 4
Vậy..
Ta có: \(2^9-1=2^{3.3}-1=\left(2^3\right)^3-1=8^3-1\)
\(\Rightarrow2^9-1⋮8-1=7\)\(\Rightarrow2^9-1⋮7\)(1)
mà \(\hept{\begin{cases}35⋮7\\14⋮7\end{cases}}\Rightarrow\hept{\begin{cases}35x⋮7\\14y⋮7\end{cases}}\forall x,y\)
\(\Rightarrow35x-14y⋮7\)\(\forall x,y\)(2)
Từ (1) và (2) \(\Rightarrow A⋮7\)( đpcm )
8) 35x=21y=15z và x+y-z=9
\(\frac{35x}{105}\)=\(\frac{21y}{105}\)=\(\frac{15z}{105}\)=>\(\frac{x}{3}\)=\(\frac{y}{5}\)=\(\frac{z}{7}\)và x+y-z=9
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{3}\)=\(\frac{y}{5}\)=\(\frac{z}{7}\)=\(\frac{x+y-z}{3+5-7}\)=\(\frac{9}{1}\)=9
Do đó
\(\frac{x}{3}\)=9=> x=3.9=27
\(\frac{y}{5}\)=9 => y=5.9=45
\(\frac{z}{7}\)=9 =>z=7.9=63
Vậy x=27; y=45; z=63
Vì 35x=14y=10z
=> \(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{z}{7}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có :
\(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{z}{7}=\dfrac{\left(x+z-y\right)}{2+5-7}=\dfrac{20}{0}=0\)
Có : x/2 = 0 => x = 2*0 = 0
y/5 = 0 => y = 5*0 = 0
z/7 = 0 => z=7*0=0
Vậy, ..