Tập hợp các số tự nhiên n để 2n-3 chia hết cho n+1 là
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2n-3/n+1=-5 tìm ước của -5 , ước của -5 ( -1 ; 5 ; 1; 5 ) . Vì là số tự nhiên nên chi có 1 va 5 thoã mãm , n+1=5=>n=4:n+1=1=>n=0
2n - 3 chia hết cho n + 1
=> 2n + 2 - 5 chia hết cho n + 1
=> 2.(n + 1) - 5 chia hết cho n + 1
=> (-5) chia hết cho n + 1
=> n + 1 thuộc Ư(-5) = {1 ; -1 ; 5 ; -5 }
=> n + 1 = 1 => n = 0
n + 1 = -1 => n = -2
n + 1 = 5 => n = 4
n + 1 = -5 => n = -6
Vì n là số tự nhiên
=> n = 0 ; 4
2n - 3 chia hết cho n + 1
=> 2n + 2 -5 chia hết cho n + 1
=> 2 x ( n + 1 ) -5 chia hết cho n + 1
=> ( -5 ) chia hết cho n + 1
=> n + 1 thuộc Ư ( -5 ) = { 1 ; -1 ; 5 ;-5 }
* n + 1 = 1
=> n = 0
* n + 1 = -1
=> n = -2
* n + 1 = 5
=> n = 4
* n + 1 = -5
=> n = -6
4n + 21 ⋮ 2n + 3
2n + 2n + 3 + 3 + 15 ⋮ 2n + 3
(2n + 3) + (2n + 3) + 15 ⋮ 2n + 3
2(2n + 3) + 15 ⋮ 2n + 3
=> 2n + 3 ∈ Ư(15) = { ± 1; ± 3; ± 5; ± 15 }
=> 2n + 3 = { ± 1; ± 3; ± 5; ± 15 }
=> 2n = { - 18; - 8; - 6; - 4; - 2; 0; 2; 12 }
=> n = { - 9; - 4; - 3; - 2; - 1; 0; 1; 6 }
\(\frac{4n+21}{2n+3}\)=\(\frac{2\left(2n+3\right)+15}{2n+3}\)=\(\frac{2\left(2n+3\right)}{2n+3}\)+\(\frac{15}{2n+3}\)=2+ \(\frac{15}{2n+3}\)Để 4n+21 \(⋮\)2n+3 thì \(\frac{15}{2n+3}\)thuộc Z( có nghĩa là 15 chia hết cho 2n+3 OK)
vậy 2n+3 thuộc ước của 15 =( +-1;+-3;+-5;+-15)
suy ra 2n thuộc tất cả cái đó trừ đi 3 nhưng la số tự nhiên nên ko lấy những số âm
vậy n bằng mấy số đó chia 2
OK
4n+21 chia hết cho 2n+3
2(2n+3)+15chia hết cho 2n+3
=>15 chia hết cho 2n+3 hay 2n+3 thuộc Ư(15)={1;3;5;15}
=>2n thuộc{0;2;12} loại trường hợp số âm
=>n thuộc{0;1;6}
4n+21 chia hết cho 2n+3
=> 2(4n+21) - 4(2n+3) chia hết cho 2n+3
=> 8n+42 - 8n+12 =30
=> 30 : 2n+3 thuộc Ư(30)={1;-1;2;-2;3;-3;5;-5;6;-6;15;-15;30;-30}
=> n thuộc {0;1;6}
n thuộc tập hợp các số sau;0;-2;-7;3
\(\frac{2n-3}{n+1}=\frac{2.\left(n+1\right)-5}{n+1}=2-\frac{3}{n+1}\)
2n-3 chia hết cho n+1 <=>\(\frac{2n-3}{n+1}\in Z\Leftrightarrow\frac{3}{n+1}\in Z\)
=>3 chia hết cho n+1
=>n+1 E Ư(3)={-3;-1;1;3}
=>n \(\in\) {-4;-2;0;2}