giải phương trình :
\(\frac{x^2+2006x-1}{2006}+\frac{x^2+2006x-2}{2005}+...+\frac{x^2+2006x-7}{2000}=\frac{x^2+2006x-8}{1999}+...+\frac{x^2+2006x-14}{1993}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 5x( x - 1 )( 2x + 3 ) - 10x( x - 4 )
= 5x( 2x2 + x - 3 ) - 10x2 + 40x
= 10x3 + 5x2 - 15x - 10x2 + 40x
= 10x3 - 5x2 + 25x
Thế x = -1/3 ta được
A = \(10\times\left(-\frac{1}{3}\right)^3-5\times\left(-\frac{1}{3}\right)^2+25\times\left(-\frac{1}{3}\right)\)
= \(10\times\left(-\frac{1}{27}\right)-5\times\frac{1}{9}-\frac{25}{3}\)
= \(-\frac{10}{27}-\frac{5}{9}-\frac{25}{3}\)
= \(-\frac{250}{27}\)
b) Đề sai . Tính khó
c) x = 14
=> 13 = x - 1
15 = x + 1
16 = x + 2
29 = 2x + 1
Thế vào C ta được :
C = x5 - ( x + 1 )x4 + ( x + 2 )x3 - ( 2x + 1 )x2 + ( x - 1 )x
= x5 - x5 - x4 + x4 + 2x3 - 2x3 - x2 + x2 - x
= -x = -14
Giải phương trình chứ chứng minh cái gì
\(\frac{1}{2x-2006}+\frac{1}{3-2007x}+\frac{1}{2006x+2005}=\frac{1}{x+2}\)
\(\Leftrightarrow\left(\frac{1}{2x-2006}-\frac{1}{x+2}\right)+\left(\frac{1}{3-2007x}+\frac{1}{2006x+2005}\right)=0\)
\(\Leftrightarrow\frac{x-2008}{\left(2x-2006\right)\left(x+2\right)}+\frac{x-2008}{\left(3-2007x\right)\left(2006x-2005\right)}=0\)
\(\Leftrightarrow\left(x-2008\right)\left(\frac{1}{\left(2x-2006\right)\left(x+2\right)}+\frac{1}{\left(3-2007x\right)\left(2006x-2005\right)}\right)=0\)
\(\Leftrightarrow\left(x-2008\right)\left(2008x-1\right)\left(2005x+2003\right)=0\)
\(\Leftrightarrow x=2008;x=\frac{1}{2008};x=-\frac{2003}{2005}\)
Với x = 2005 ta có
\(x^{2005}-2006x^{2004}+2006x^{2003}-2006x^{2002}+...-2006x^2+2006x-1\)
\(=\left(x^{2005}-2005x^{2004}\right)-\left(x^{2004}-2005^{2003}\right)+\left(x^{2003}-2005x^{2002}\right)-...-\left(x^2-2005x\right)+\left(x-2005\right)+2006\)
\(=\left(x-2005\right)\left(x^{2004}-x^{2003}+x^{2002}-...-x+1\right)+2006=2006\).
Thay 2006=x+1 vào biểu thức ta được:
\(B=x^{10}-\left(x+1\right).x^9+\left(x+1\right).x^8-\left(x+1\right).x^7+....+\left(x+1\right).x^2-\left(x+1\right).x\)
\(\Leftrightarrow B=x^{10}-x^{10}-x^9+x^9+x^8-x^8+......+x^3+x^2-x^2-x\)
\(\Leftrightarrow B=-x=-2005\)
\(B=x^{10}-2006x^9+2006x^8-2006x^7+...+2006x^2-2006x\\ =x^{10}-\left(2005+1\right)x^9+\left(2005+1\right)x^8-\left(2005+1\right)x^7+...+\left(2005+1\right)x^2-\left(2005+1\right)x\\ =2005^{10}-\left(2005+1\right)\cdot2005^9+\left(2005+1\right)\cdot2005^8-\left(2005+1\right)\cdot2005^7+...+\left(2005+1\right)\cdot2005^2-\left(2005+1\right)\cdot2005\\ =2005^{10}-2005^{10}-2005^9+2005^9+2005^8-2005^8-2005^7+...+2005^3+2005^2-2005^2-2005\\ =-2005\)
Vậy \(B=-2005\)
Do x=2005 nên 2006= x+1; thay vào ta có:
\(D=x^{20}-x^{20}-x^{19}+x^{19}+x^{18}-.....-x^2-x+x+1\)
\(=>D=1\)
CHÚC BẠN HỌC TỐT........
Trừ cả 2 vế cho 7 ta được:
\(\frac{x^2+2006x-1}{2006}-1+\frac{x^2+2006x-2}{2005}-1+...+\frac{x^2+2006x-7}{2000}-1\)
\(=\frac{x^2+2006x-8}{1999}-1+...+\frac{x^2+2006x-14}{1993}-1\)
=> \(\frac{x^2+2006x-2007}{2006}+\frac{x^2+2006x-2007}{2005}+...+\frac{x^2+2006x-2007}{2000}=\frac{x^2+2006x-2007}{1999}+...+\frac{x^2+2006x-2007}{1993}\)
=> \(\left(x^2+2006x-2007\right)\left(\frac{1}{2006}+\frac{1}{2005}+...+\frac{1}{2000}-\frac{1}{1999}-...-\frac{1}{1993}\right)=0\)
=> x2 + 2006x -2007 = 0. Vì \(\frac{1}{2006}+\frac{1}{2005}+...+\frac{1}{2000}
mình sửa lại chút sai xót bài giải trên: nhận xét 1/2006+...+ 1/2000-1/1999-...- 1/993 < 0 nhé! sửa dấu + thành dấu -