Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left|2x-1\right|+3\ge3\Leftrightarrow\dfrac{3+\left|2x-1\right|}{14}\ge\dfrac{3}{14}\)
Dấu \("="\Leftrightarrow2x-1=0\Leftrightarrow x=\dfrac{1}{2}\)
\(\dfrac{-4x^2+4x}{15}=\dfrac{-4x^2+4x-1+1}{15}=\dfrac{-\left(2x-1\right)^2+1}{15}\)
Ta có \(-\left(2x-1\right)^2+1\le1\Leftrightarrow\dfrac{-\left(2x-1\right)^2+1}{15}\le\dfrac{1}{15}\)
Dấu \("="\Leftrightarrow2x-1=0\Leftrightarrow x=\dfrac{1}{2}\)
Ta có
\(\frac{4x+3}{x^2+1}=\frac{-\left(x^2+1\right)+x^2+4x+4}{x^2+1}=-1+\frac{\left(x+2\right)^2}{x^2+1}\ge-1\)
Dấu ''='' xảy ra <=>x=-2
Ta có
\(\frac{4x+3}{x^2+1}=\frac{4\left(x^2+1\right)-4x^2+4x-1}{x^2+1}=4-\frac{\left(2x-1\right)^2}{x^2+1}\le4\)
Dấu ''='' xảy ra <=>x=1/2
Ta có: A=\(\frac{7}{2x^2-6x+100}=\frac{7}{2x^2-6x+4.5+95.5}\)
=\(\frac{7}{2\left(x^2-3x+2.25\right)+95.5}=\frac{7}{2\left(x-1.5\right)^2+95.5}\)
Ta có: Để phân số \(\frac{7}{2\left(x-1.5\right)^2+95.5}\)lớn nhất <=> \(2\left(x-1.5\right)^2+95.5\)nhỏ nhất
Ta có: 2(x-1.5)^2 lớn hơn hoặc bằng 0 với mọi x thuộc R
=> \(2\left(x-1.5\right)^2+95.5\)lớn hơn hoặc bằng 95.5 với mọi x thuộc R
Dấu"=" xảy ra khi \(2\left(x-1.5\right)^2+95.5\)=95.5
<=> 2(x-1.5)^2=0
<=> x-1.5=0
<=> x=1.5
Vậy GTLN của biểu thức A là A=\(\frac{7}{95.5}=\frac{14}{191}\)tại x=1.5
Câu b tương tự
Theo bài ra ta có:
-4x2+4x = (-1).4x2 + 4x = 4x.(-x+1)
=> 4x.(-x+1)/15 có GTLN
Vì 4x.(-x+1)/15 có GTLN
=> 4x.(-x+1) có GTLN => x nhỏ nhất ; -x lớn nhất
Do đó, x =1 hoăc =0
=> Biểu thức trên có GTLN là 0
Ta có: \(\frac{-4x^2+4x}{15}\)
\(=\frac{-4x^2+4x-1+1}{15}\)
\(=\frac{-\left(2x-1\right)^2+1}{15}\)
\(=\frac{-\left(2x-1\right)^2}{15}+\frac{1}{15}\le\frac{1}{15}\forall x\)
Vậy GTLN của \(\frac{-4x^2+4x}{15}\)là \(\frac{1}{15}\)\(\Leftrightarrow2x-1=0\Leftrightarrow x=\frac{1}{2}\)
Đây là một câu hỏi quá rộng nên rất khó để trả lời.
Tìm được max hay min thì có nhiều phương pháp, đã được đề cập trong nhiều đầu sách/ tài liệu.
Thông thường phân thức người ta sẽ nói rõ là tìm max hay min rồi.
Đối với phân thức mà người ta nói tìm max hoặc min (không nói rõ), nếu ta thấy nó có những điều kiện để xảy ra dấu $\geq$ thì nó có min và ngược lại, nó có những điều kiện để tạo ra dấu $\leq$ thì nó có max. Còn điều kiện là gì thì tùy bài quyết định.
Ta có \(D=\frac{4x+3}{x^2+1}=\frac{x^2+4x+4-\left(x^2+1\right)}{x^2+1}=\frac{\left(x+2\right)^2}{x^2+1}-1\ge-1.\) Dấu bằng xảy ra khi và chỉ khi \(x=-2.\) Vậy giá trị bé nhất của D là \(-1.\)
Mặt khác, ta có \(D=\frac{4x+3}{x^2+1}=\frac{-\left(4x^2-4x+1\right)+4\left(x^2+1\right)}{x^2+1}=\frac{-\left(2x-1\right)^2}{x^2+1}+4\le4.\) Dấu bằng xảy ra khi và chỉ \(x=\frac{1}{2}\). Vậy giá trị lớn nhất của D là \(4.\)
Với x \(\ge\)0 ; x \(\ne\)9 phương trình tương đương
\(A=\frac{1}{\sqrt{x}-3}+\frac{\sqrt{x}+11}{x-9}\)
\(=\frac{\sqrt{x}+3+\sqrt{x}+11}{x-9}=\frac{2\sqrt{x}+14}{x-9}\)
mà \(B=\frac{\sqrt{x}-3}{2}\)
a, Ta có M = AB hay \(M=\frac{2\sqrt{x}+14}{x-9}.\frac{\sqrt{x}-3}{2}=\frac{2\left(\sqrt{x}+7\right)\left(\sqrt{x}-3\right)}{2\left(\sqrt{x}\pm3\right)}=\frac{\sqrt{x}+7}{\sqrt{x}+3}\)
b, Để M đạt GTLN khi
\(\frac{\sqrt{x}-7}{\sqrt{x}+3}\le0\)
\(\Leftrightarrow M=\frac{\sqrt{x}-3-4}{\sqrt{x}-3}=1-\frac{4}{\sqrt{x}-3}\le1\)
Dấu ''='' xảy ra <=> x = 9
Vậy GTLN M là 1 <=> x = 9