K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Ta có: ΔABC vuông tại A(gt)

\(\widehat{B}+\widehat{C}=90^0\)(hai góc nhọn phụ nhau)

\(\widehat{B}=90^0-\widehat{C}=90^0-36^0\)

hay \(\widehat{B}=54^0\)

Vậy: \(\widehat{B}=54^0\)

b) Xét ΔAMB vuông tại A và ΔCMD vuông tại C có 

AM=CM(M là trung điểm của AC)

\(\widehat{AMB}=\widehat{CMD}\)(hai góc đối đỉnh)

Do đó: ΔAMB=ΔCMD(cạnh góc vuông-góc nhọn kề)

c) Ta có: ΔAMB=ΔCMD(cmt)

nên MB=MD(hai cạnh tương ứng)

Xét ΔAMD và ΔCMB có 

MD=MB(cmt)

\(\widehat{AMD}=\widehat{CMB}\)(hai góc đối đỉnh)

MA=MC(M là trung điểm của AC)

Do đó: ΔAMD=ΔCMB(c-g-c)

Suy ra: \(\widehat{MAD}=\widehat{MCB}\)(hai góc tương ứng)

mà \(\widehat{MAD}\) và \(\widehat{MCB}\) là hai góc ở vị trí so le trong

nên AD//BC(Dấu hiệu nhận biết hai đường thẳng song song)

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow AC^2=BC^2-AB^2=5^2-3^2=16\)

hay AC=4(cm)

Vậy: AC=4cm

13 tháng 5 2018

a) Xét tam giâc ABC

có: AB< AC ( 4 cm < 6 cm)

=> góc ACB < góc góc ABC ( quan hệ cạnh với góc đối diện)

b) Xét tam giác ABM vuông tại A và tam giác CDM vuông tại C

có: AM = CM ( gt)

góc AMB = góc CMD ( đối đỉnh)

\(\Rightarrow\Delta ABM=\Delta CDM\left(cgv-gn\right)\)

c) ta có: \(AM=CM=\frac{AC}{2}=\frac{6}{2}=3cm\)

\(\Rightarrow AM=CM=3cm\)

Xét tam giác ABM vuông tại A

có: \(AB^2+AM^2=BM^2\left(py-ta-go\right)\)

thay số: \(4^2+3^2=BM^2\)

          \(BM^2=25\)

\(\Rightarrow BM=5cm\)

Xét tam giác ABC

có: BN = CN (gt)

=> AN là đường trung tuyến của BC

có: AM = CM (gt)

=> BM là đường trung tuyến của AC

mà AN cắt BM tại G

=> G là trọng tâm của\(\Delta ABC\)( định lí)

\(\Rightarrow\frac{GM}{BM}=\frac{1}{3}\)( định lí)

thay số: \(\frac{GM}{5}=\frac{1}{3}\Leftrightarrow GM=\frac{1}{3}.5=\frac{5}{3}cm\)

\(\Rightarrow GM=\frac{5}{3}cm\)

a: Xét tứ giác ABCD có

m là trung điểm chung của AC và BD

=>ABCD là hình bình hành

=>AD//BC

b: ABCD là hình bình hành

=>AB//CD
=>CD vuông góc AC

c: Xét tứ giác ABNC có

AB//NC

AC//BN

=>ABNC là hình bình hành

=>BN=AC; AB=NC

Xét ΔBAM vuông tại A và ΔNCM vuông tại C có

MA=MC

BA=CN

=>ΔBAM=ΔNCM

26 tháng 11 2019

bạn tự vẽ hình nha 

a) xét tg ABM và tg CDM có 

  MA=MC(M là trung điểm AC )

  \(\widehat{AMB}=\widehat{DMC}\)( đối đỉnh )

  MB=MD(gt)

\(\Rightarrow\)tg ABM=tg CDM (c-g-c)

b) bạn xem lại đề bài nha mik nghĩ là đề sai 

c) ta có MB=MD,MA=MC(gt)

 mà M lại là trung điểm của BD,AC

\(\Rightarrow\)ABCD là hình chữ nhật 

có E là trung diểm BC 

mà EM cắt AD tại F

\(\Rightarrow F\)là trung điểm AD (dpcm)

26 tháng 11 2019

P/s : sửa đề : MB = MD B C E M F D A

a) Xét tam giác ABM và tam giác CDM có : 

AM = CM ( vì M là trung điểm của AC ) 

Góc AMB = góc CMD ( 2 góc đối đỉnh )

MB = MD ( GT )

=> tam giác ABM = tam giác CDM ( c - g - c ) 

b) Theo chứng minh trên , ta có : tam giác ABM = tam giác CDM

=> Góc BAM = Góc MCD ( 2 góc tương ứng )

Mà góc BAM = 90( Tam giác ABC vuông tại A )

=> Góc MCD = 90o

=> AC vuông góc với DC tại C 

c) +) Xét tam giác ABC có :

E là trung điểm của BC ( GT )

M là trung điểm của AC ( GT )

=> EM là đường trung bình của tam giác ABC 

=> EM // AB ( tính chất )

Mà AB // CD ( do AC \(\perp\)CD ; AC \(\perp\) AB )

=> EM // CD hay MF // CD

+) Xet tam giác ACD có :

M là trung điểm của AC

MF // CD

=> F là trung điểm của AD ( điều phải chứng mình )

a: Xét ΔABD và ΔACD có

AB=AC

BD=CD

AD chung

Do đó: ΔABD=ΔACD

=>\(\widehat{BAD}=\widehat{CAD}\)

mà tia AD nằm giữa hai tia AB và AC

nên AD là phân giác của \(\widehat{BAC}\)

b: Xét ΔABM và ΔACM có

AB=AC

\(\widehat{BAM}=\widehat{CAM}\)

AM chung

Do đó: ΔABM=ΔACM

=>\(\widehat{ABM}=\widehat{ACM}\)

mà \(\widehat{ACM}=90^0\)

nên \(\widehat{ABM}=90^0\)

=>AB\(\perp\)BM

 

8 tháng 1

bạn cho mình hình vẽ được không ạ 

15 tháng 12 2017
nhanh giùm với
16 tháng 12 2017

(Bạn tự vẽ hình giùm)

a/ \(\Delta ADM\)và \(\Delta CBM\)có: AM = CM (M là trung điểm của AC)

\(\widehat{AMD}=\widehat{BMC}\)(đối đỉnh)

DM = BM (gt)

=> \(\Delta ADM\)\(\Delta CBM\)(c. g. c) => AD = BC (hai cạnh tương ứng)

b/ \(\Delta ABM\)và \(\Delta CDM\)có: AM = CM (M là trung điểm của AC)

\(\widehat{AMB}=\widehat{CMD}\)(đối đỉnh)

BM = DM (gt)

=> \(\Delta ABM\)\(\Delta CDM\)(c. g. c)

=> \(\widehat{BAM}=\widehat{MCD}=90^o\)(hai góc tương ứng)

=> AC _|_ CD (đpcm)