K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 3 2016

SORRY LỘN

6 tháng 3 2020

\(\Delta\)không thì dùng cách này cho dễ

\(x^2+3y^2+2xy-18\left(x+y\right)+73=0\)

\(\Leftrightarrow\left(x+y\right)^2-18\left(x+y\right)+81+2y^2=8\)

\(\Leftrightarrow\left(x+y-9\right)^2+2y^2=8\)

\(\Rightarrow2y^2\le8\Rightarrow y^2\le4\Rightarrow-2\le y\le2\)

\(\Rightarrow y\in\left\{\pm1;\pm2;0\right\}\)( do y nguyên )

+) y = 0 \(\Rightarrow\left(x+y-9\right)^2=8\)( loại )

+) y = \(\pm1\)\(\Rightarrow\left(x+y-9\right)^2=6\)( loại )

+) y = \(\pm2\)\(\Rightarrow\left(x+y-9\right)^2=0\Rightarrow x=9-y\Rightarrow\orbr{\begin{cases}x=7\\x=11\end{cases}}\)

Vậy ( x ; y ) \(\in\){ ( 7 ; 2 ) ; ( 11 ; -2 ) }

29 tháng 8 2023

\(y^2=-2\left(x^6-x^3y-32\right)\)

\(\Leftrightarrow2x^6-2x^3y+y^2=64\)

\(\Leftrightarrow4x^6-4x^3y+2y^2=128\)

\(\Leftrightarrow\left(2x^3-y\right)^2+y^2=128\)

Áp dụng bất đẳng thức sau: \(A^2+B^2\ge\dfrac{\left(A+B\right)^2}{2}\), ta có:

\(\left(2x^3-y\right)^2+y^2\ge\dfrac{\left(2x^3-y+y\right)^2}{2}=2x^6\)

\(\Leftrightarrow128\ge2x^6\Leftrightarrow x^6\le64\)

\(\Leftrightarrow-2\le x^2\le2\)

Vậy \(x\in\left\{-2;-1;0;1;2\right\}\)

30 tháng 5 2016

Bạn thông cảm, mình phải sử dụng cách của lớp 9 vậy :))

\(2x^2+8x=67-3y^2\Leftrightarrow2x^2+8x+\left(3y^2-67\right)=0\)\(\left(x,y>0\right)\)

Xét \(\Delta'=16-2.\left(3y^2-67\right)=-6y^2+150\)

Để phương trình có nghiệm thì \(0\le\Delta'\le150\)

\(\Rightarrow0< y\le5\)(Vì x,y nguyên dương) 

Do đó ta xét y trong khoảng trên, được : 

1. Với y = 1 suy ra phương trình : \(2x^2+8x-64=0\Leftrightarrow x^2+4x-32=0\Rightarrow x=4\)(Nhận ) hoặc \(x=-8\)( Loại)

2. Với y = 2 suy ra phương trình : \(2x^2+8x-55=0\Rightarrow x=\frac{-4+3\sqrt{14}}{2}\)(Loại) hoặc \(x=\frac{-4-3\sqrt{14}}{2}\)(Loại)

3. Với y = 3 suy ra phương trình : \(2x^2+8x-40=0\Leftrightarrow x^2+4x-20=0\Rightarrow x=-2+2\sqrt{6}\)(loại) hoặc \(x=-2-2\sqrt{6}\)(Loại)

4. Với y = 4 suy ra phương trình : \(2x^2+8x-19=0\Rightarrow x=\frac{-4+3\sqrt{6}}{2}\)(Loại) hoặc \(x=\frac{-4-3\sqrt{6}}{2}\)(Loại)

5. Với y = 5 suy ra phương trình : \(2x^2+8x+8=0\Leftrightarrow x^2+4x+4=0\Rightarrow x=-2\)(Loại)

Vậy kết luận : Tập nghiệm của phương trình là : \(\left(x;y\right)=\left(4;1\right)\)