K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 9 2023

a.25 - y² = 8(x - 2009)

 25 - y² = 8x - 16072

 - 8x = -16072 - 25 + y²

 - 8x = -16097 + y²

 x = 16097/8 - 1/8y2

-Vậy x = 16097/8 - 1/8y2

25 tháng 9 2023

dvs hứ

20 tháng 7 2023

@ Nguyễn Thị Thương Hoài

Giúp em với ạ.

 

20 tháng 7 2023

Tìm \(x\); y nguyên hay thế nào em 

13 tháng 11 2023

a, 25 - y² = 8(x - 2009)

⇔ 25 - y² = 8x - 16072

⇔ - 8x = -16072 - 25 + y²

⇔ - 8x = -16097 + y²

⇔ x = 160978 - 18y²

 Vậy x = 160978 - 18y²

b,=>x(y+2)-(y+2)=3

=>(y+2)(x-1)=3

Vì x,y thuộc Z nên y+2 và x-1 thuộc Ư(3)={+1;+3;-1;-3}

Sau đó thay lần lượt các cặp -1 với -3 và 1 với 3

c,Tìm x, y biết: x + y + 9 = xy - 7

=> x + y + 16 = xy 

=> x + 16 = xy - y

=> x + 16 = y(x-1) 

=> y = x+16y−1

 Do y thuộc Z => x+16x−1

  thuộc Z => x + 16 chia hết cho x - 1

=> x−1+17x−1 = 1 + 17x−1

=> x - 1 thuộc Ư(17) = {+ 1 ; + 17}

=> x thuộc {0 ; 2 ; -16 ; 18} ( thỏa mãn đề bài)

Nếu x = 0 thì y = -16

Nếu x = 2 thì y = 18

Nếu x = -16 thì y = 0

Nếu x = 18 thì y = 2

Vậy (x,y) = (0; - 16) ; (2;18) ; (-16 ; 0) ; (18 ; 2)

Thay x, y ta được cặp số thỏa mãn đề bài

23 tháng 9 2021

\(a,x+y=1\Leftrightarrow\left(x+y\right)^3=1\Leftrightarrow x^3+y^3+3xy\left(x+y\right)=1\\ \Leftrightarrow x^3+y^3+3xy\cdot1=1\Leftrightarrow x^3+y^3+3xy=1\)

\(b,x^3-y^3-3xy\\ =x^3-3x^2y+3xy^2-y^3-3xy+3x^2y-3xy^2\\ =\left(x-y\right)^3-3xy\left(x-y-1\right)\\ =1^3-3xy\left(1-1\right)=1-0=1\)

\(c,x^3+y^3+3xy\left(x^2+y^2\right)+6x^2y^2\left(x+y\right)\\ =\left(x+y\right)\left(x^2-xy+y^2\right)+3xy\left[\left(x+y\right)^2-2xy\right]+6x^2y^2\\ =x^2-xy+y^2+3xy-6x^2y^2+6x^2y^2\\ =x^2+2xy+y^2=\left(x+y\right)^2=1\)

`#3107.101107`

`D = x^3 - y^3 - 3xy` biết `x - y - 1 = 0`

Ta có:

`x - y - 1 = 0`

`=> x - y = 1`

`D = x^3 - y^3 - 3xy`

`= (x - y)(x^2 + xy + y^2) - 3xy`

`= 1 * (x^2 + xy + y^2) - 3xy`

`= x^2+ xy + y^2 - 3xy`

`= x^2 - 2xy + y^2`

`= x^2 - 2*x*y + y^2`

`= (x - y)^2`

`= 1^2 = 1`

Vậy, với `x - y = 1` thì `D = 1`

________

`E = x^3 + y^3` với `x + y = 5; x^2 + y^2 = 17`

`x + y = 5`

`=> (x + y)^2 = 25`

`=> x^2 + 2xy + y^2 = 25`

`=> 2xy = 25 - (x^2 + y^2)`

`=> 2xy = 25 - 17`

`=> 2xy = 8`

`=> xy = 4`

Ta có:

`E = x^3 + y^3`

`= (x + y)(x^2 - xy + y^2)`

`= 5 * [ (x^2 + y^2) - xy]`

`= 5 * (17 - 4)`

`= 5 * 13`

`= 65`

Vậy, với `x + y = 5; x^2 + y^2 = 17` thì `E = 65`

________

`F = x^3 - y^3` với `x - y = 4; x^2 + y^2 = 26`

Ta có:

`x - y = 4`

`=> (x - y)^2 = 16`

`=> x^2 - 2xy + y^2 = 16`

`=> (x^2 + y^2) - 2xy = 16`

`=> 2xy = (x^2 + y^2) - 16`

`=> 2xy = 26 - 16`

`=> 2xy = 10`

`=> xy = 5`

Ta có:

`F = x^3 - y^3`

`= (x - y)(x^2 + xy + y^2)`

`= 4 * [ (x^2 + y^2) + xy]`

`= 4 * (26 + 5)`

`= 4*31`

`= 124`

Vậy, với `x - y = 4; x^2 + y^2 = 26` thì `F = 124.`

`a, x^3 + y^3 + x + y`

`= (x+y)(x^2-xy+y^2)+x+y`

`= (x+y)(x^2-xy+y^2+1)`

`b, x^3 - y^3 + x -y`

`= (x-y)(x^2+xy+y^2)+x-y`

`= (x-y)(x^2+xy+y^2+1)`

`c, (x-y)^3 + (x+y)^3`

`= (x-y+x+y)(x^2-2xy+y^2 - x^2 + y^2 + x^2 + 2xy + y^2)`

`= (2x)(x^2 + 3y^2)`

`d, x^3 - 3x^2y + 3xy^2 - y^3 + y^2 - x^2`

`= (x-y)^3 + (y-x)(x+y)`

`=(x-y)(x^2+2xy+y^2-x-y)`

a: =(x+y)(x^2-xy+y^2)+(x+y)

=(x+y)(x^2-xy+y^2+1)

b: =(x-y)(x^2+xy+y^2)+(x-y)

=(x-y)(x^2+xy+y^2+1)

c: =x^3-3x^2y+3xy^2-y^3+x^3+3x^2y+3xy^2-y^3

=2x^3+6xy^2

d: =(x-y)^3+(y-x)(y+x)

=(x-y)[(x-y)^2-(x+y)]