GIÚP EM VỚI,EM ĐANG CẦN GẤP Cho tứ diện ABCD gọi I,J là các điểm lần lượt nằm trên AB,AD với AI=1/2,AJ=3/2JD.Tìm giao tuyến của:
a)(ACD)∩(CIJ)
b)(CIJ)∩(BCD)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trong mp (ACD), kéo dài IJ cắt CD tại E thì E là giao điểm của CD và (IJK)
Giả sử K là trung điểm của AC
Suy ra M,N lần lượt là trọng tâm của tam giác ABC và tam giác ACD
Do đó, tam giác KBC có:\(\frac{{KM}}{{KB}} = \frac{{KN}}{{KD}} = \frac{1}{3}\)
Suy ra MN // BD
Chứng minh tương tự với trường hợp K bất kỳ
a: \(I\in AD\subset\left(JAD\right)\)
\(I\in IB\subset\left(IBC\right)\)
Do đó: \(I\in\left(JAD\right)\cap\left(IBC\right)\left(1\right)\)
\(J\in BC\subset\left(IBC\right)\)
\(J\in JA\subset\left(JAD\right)\)
Do đó: \(J\in\left(IBC\right)\cap\left(JAD\right)\left(2\right)\)
Từ (1) và (2) suy ra \(\left(JAD\right)\cap\left(IBC\right)=JI\)
b: Xét ΔABD có
M,I lần lượt là trung điểm của AB,AD
=>MI là đường trung bình của ΔABD
=>MI//BD
Xét (IMN) và (DBN) có
\(N\in\left(IMN\right)\cap\left(DBN\right)\)
IM//BD
Do đó: (IMN) giao (DBN)=xy, xy đi qua N và xy//IM//BD
c: Chọn mp(ABD) có chứa BD
\(I\in AD\subset\left(ABD\right)\)
\(I\in NI\subset\left(NIJ\right)\)
Do đó: \(I\in\left(ABD\right)\cap\left(INJ\right)\)(3)
Trong mp(ABC), gọi K là giao điểm của JN với AB
\(K\in AB\subset\left(ABD\right)\)
\(K\in JN\subset\left(INJ\right)\)
Do đó: \(K\in\left(ABD\right)\cap\left(NIJ\right)\)(4)
Từ (3) và (4) suy ra \(\left(ABD\right)\cap\left(NIJ\right)=IK\)
Gọi E là giao điểm của BD với IK
=>E là giao điểm của BD với mp(NIJ)
a) Gọi N = DK ∩ AC; M = DJ ∩ BC.
Ta có (DJK) ∩ (ABC) = MN ⇒ MN ⊂ (ABC).
Vì L = (ABC) ∩ JK nên dễ thấy L = JK ∩ MN.
b) Ta có I là một điểm chung của (ABC) và (IJK).
Mặt khác vì L = MN ∩ JK mà MN ⊂ (ABC) và JK ⊂ (IJK) nên L là điểm chung thứ hai của (ABC) và (IJK), suy ra (IJK) ∩ (ABC) = IL.
Gọi E = IL ∩ AC; F = EK ∩ CD. Lí luận tương tự ta có EF = (IJK) ∩ (ACD).
Nối FJ cắt BD tại P; P là một giao điểm (IJK) và (BCD).
Ta có PF = (IJK) ∩ (BCD) Và IP = (ABD) ∩ (IJK)
a,Hiển nhiên : K ∈ (KAD), mà K ∈ BC nên K ∈ (BCD)
Hiển nhiên : D ∈ (KAD) và D ∈ (BCD)
⇒ (KAD) \(\cap\) (BCD) = DK
b, Hiển nhiên : K ∈ (KAD), mà K ∈ BC nên K ∈ (IBC)
Hiển nhiên I ∈ (IBC), mà I ∈ AD nên I ∈ (KAD)
⇒ (KAD) \(\cap\) (BCI) = IK
c, Trong (ABD) gọi E là giao điểm của BI và DM
⇒ \(\left\{{}\begin{matrix}E\in\left(IBC\right)\\E\in\left(DMN\right)\end{matrix}\right.\)
Trong (ACD) gọi F là giao điểm của CI và DN
⇒ \(\left\{{}\begin{matrix}F\in\left(IBC\right)\\F\in\left(DMN\right)\end{matrix}\right.\)
Vậy (DMN) \(\cap\) (IBC) = EF
Trong mp(BCD), gọi M là giao điểm của KJ với DC
\(M\in KJ\subset\left(IJK\right)\)
\(M\in CD\subset\left(ACD\right)\)
Do đó: \(M\in\left(IJK\right)\cap\left(ACD\right)\left(1\right)\)
\(I\in AC\subset\left(ACD\right);I\in\left(IJK\right)\)
=>\(I\in\left(ACD\right)\cap\left(IJK\right)\left(2\right)\)
Từ (1) và (2) suy ra \(\left(IJK\right)\cap\left(ACD\right)=MI\)
Xét ΔCAB có
\(\dfrac{CI}{CA}=\dfrac{CJ}{CB}=\dfrac{1}{2}\)
nên IJ//AB
\(K\in BD\subset\left(ABD\right);K\in\left(IJK\right)\)
=>\(K\in\left(ABD\right)\cap\left(IJK\right)\)
Xét (ABD) và (IJK) có
\(K\in\left(ABD\right)\cap\left(IJK\right)\)
IJ//AB
Do đó: (ABD) giao (IJK)=xy, xy đi qua K và xy//IJ//AB
a) Gọi \(N=DK\cap AC;M=DJ\cap BC\).
Ta có \(\left(DJK\right)\cap\left(ABC\right)=MN\Rightarrow MN\subset\left(ABC\right)\)
Vì \(L=\left(ABC\right)\cap JK\) nên dễ thấy \(L=JK\cap MN\)