Câu 2. Cho hàm số f(x) = x2lnx. Tính f'(e)
A. 3e
B. 2e
C. e
D. 2 + e
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Ta có \(F(x)=\int \sin xe^{\cos x}dx=-\int e^{\cos x}d(\cos x)\)
\(\Leftrightarrow F(x)=-e^{\cos x}+c\)
Mà \(F(0)=e+c=e\Rightarrow c=0\)
\(\Rightarrow F(\pi)=-e^{\cos \pi}=\frac{-1}{e}\). Đáp án B
b: f(-1)=-1
f(1/2)=-1/4
c: \(f\left(1\right)=-1^2=-1=y_E\)
Do đó: E thuộc đồ thị
\(f\left(-2\right)=-\left(-2\right)^2=-4< >y_F\)
Do đó: F không thuộc đồ thị
d: Thay x=-3 vào f(x), ta được:
\(f\left(-3\right)=-\left(-3\right)^2=-9\)
a: f(-2)=4+3=7
f(-1)=2+3=5
f(0)=3
f(1/2)=-1+3=2
f(-1/2)=1+3=4
b: g(-1)=1-1=0
f(0)=0-1=-1
ycbt\(\Leftrightarrow\hept{\begin{cases}9^4a+9^3b+9^2c+9d+e=32078\left(p\right)\\a,b,c,d,e\in N;\le8;a\ne0\end{cases}}\)
VP(p): 9 dư 2 =>e =2
\(\Rightarrow9^3a+9^2b+9c+d=\frac{32078-2}{9}=4564⋮9\Rightarrow d=0\)
\(\Rightarrow9^2a+9b+c=\frac{3564}{9}=396⋮9\Rightarrow c=0\)
\(\Rightarrow9a+b=\frac{396}{9}=44\)chia 9 dư 8 => b=8
=> 9a=36=>a=4
Vậy S =14
Ta có bảng biến thiên như hình vẽ sau:
Giá trị nhỏ nhất của hàm số là f( b) nhưng giá trị lớn nhất có thể là f (a) hoặc f( e) Theo giả thiết ta có: f(a) + f( c)) = f( b) + f( d) nên f(a) - f( d)) = f( b) - f( c)< 0
Suy ra : f( a) < f( d) < f( e)
Vậy m a x [ a ; e ] f ( x ) = f ( e ) ; m i n [ a ; e ] f ( x ) = f ( b )
Chọn C.
Đáp án C
Giả sử
Hoành độ điểm D là nghiệm phương trình:
Hoành độ điểm E là nghiệm của phương trình:
Hoành độ điểm F là nghiệm của phương trình:
Khi đó
Câu 2. Cho hàm số f(x) = x2lnx. Tính f'(e)
A. 3e
B. 2e
C. e
D. 2 + e