K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét ΔAMB có 

MD là đường phân giác ứng với cạnh AB(gt)

nên \(\dfrac{MB}{MA}=\dfrac{BD}{AD}\)(Định lí Tia phân giác)

\(\dfrac{MB}{4}=\dfrac{1.5}{3}=\dfrac{1}{2}\)

hay MB=2(cm)

Vậy: MB=2cm

23 tháng 4 2018

bn tự vẽ hình nha
a) + Tg ABC có B> C (GT) => AC> AB 
 BH, CH lần lượt là hình chiếu của AB và AC lên đường thẳng BC
Mà AC>AB (CMT)=> HC> HB -> đpcm
 



 

27 tháng 3 2019

https://olm.vn/hoi-dap/detail/65705170709.html

tham khảo

20 tháng 1 2020

Bài 1: 

A B C I E D H

Vẽ \(IH\) là tia phân giác của \(\widehat{AIC}\)

Xét \(\Delta ABC\) có:

\(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)

\(\Rightarrow\widehat{A}+\widehat{C}=180^0-\widehat{B}=180^0-60^0=120^0\)

Ta có: \(AD\) là tia phân giác của \(\widehat{A}\left(1\right)\)

Và: \(CE\) là tia phân giác của \(\widehat{C}\left(2\right)\) 

Từ   \(\left(1\right)\left(2\right)\Rightarrow\widehat{IAC}+\widehat{ICA}=\frac{120^0}{2}=60^0\)

Lại có: \(\widehat{EIA}=\widehat{IAC}+\widehat{ICA}=60^0=\widehat{AIH}\)

Xét \(\Delta EAI\) và \(\Delta HAI\) có:

\(\widehat{EAI}=\widehat{HAI}\left(AD-là-tia-p.giác-của\widehat{A}\right)\)

\(\widehat{AIE}=\widehat{AIH}\left(cmt\right)\)

\(AI\) chung

\(\Rightarrow\Delta AIE=\Delta AIH\left(g-c-g\right)\)

\(\Rightarrow IE=IH\left(1\right)\)

Chứng minh tương tự \(\Delta CHI=\Delta CDI\left(g-c-g\right)\Rightarrow ID=IH\left(2\right)\)

Từ \(\left(1\right)\left(2\right)\Rightarrow IE=ID\)

\(\Rightarrow\Delta IDE\) cân tại \(I\left(đpcm\right)\)

21 tháng 1 2020

2. A B C H K D E

Trên cạnh BC lấy điểm E sao cho BE = BD => \(\Delta\)DBE cân tại B (1)

=> BD = BE 

Ta có: BD là phân giác ^ABC  => ^DBE = 40\(^{^o}\): 2 = 20\(^o\)(2)

(1) ; (2) => ^BDE = ^DED = ( 180\(^o\)- 20\(^o\)) : 2 = 80\(^o\)

=> ^DEC = 180\(^o\)- 80\(^o\)=100\(^o\)

Xét \(\Delta\)DEC có: ^EDC = 180\(^o\)- ^DEC - ^DCE = 180\(^o\)-100\(^o\)-40\(^o\)=40\(^o\)

=> \(\Delta\)DEC cân tại E => DE = EC (3)

Từ D kẻ vuông góc với BC tại H và BA tại K.

D thuộc đường phân giác ^ABC  ( theo t/c đường phân giác ) => DK = DH 

Vì ^BAC = ^DEC = 100\(^o\)=> ^KAD = ^HED 

=> \(\Delta\)KAD = \(\Delta\)HED ( cạnh góc vuông - góc nhọn )

=> DA = DE (4)

Từ (3) ; (4) => DA = EC 

Vậy BC = BE + EC = BD + AD

16 tháng 2 2019

a) Xét tam giác ABD và tam giác ACE có 
góc ADB = góc AEC = 90 độ 
AB=AC 
góc A: chung 
=> tam giác ABD = tam giác ACE (cạnh huyền - góc nhọn) 
=> BD=CE và AD=AE 
b) Vì AB=AC và AE=AD => AB-AE=AC-AD => BE=CD 
Xét tam giác IEB và tam giác IDC có 
góc IEB = góc IDC = 90 độ 
BE=CD 
góc BIE = góc CID (đối đỉnh) 
=> tam giác IEB = tam giác IDC => IB=IC 
c) Xét tam giác AIB và tam giác AIC có 
AB=AC 
IB=IC 
AO: cạnh chung 
=> tam giác AIB = tam giác AIC (c.c.c) 
=> góc IAB=góc IAC 
=> AI la tia phân giác góc BAC

K MK NHÁ

AI K MK ,MK K LẠI NÈ