code là gì
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, ĐK : \(x\ge0;x\ne4\)
b, \(P=\frac{2x-3\sqrt{x}-2}{\sqrt{x}-2}=\frac{\left(\sqrt{x}-2\right)\left(2\sqrt{x}+1\right)}{\sqrt{x}-2}=2\sqrt{x}+1\)
Bài tập 2: Cho tập hợp: A = {0; 1; 2; x; y} và B = {3; m; n; p}. Chọn ký hiệu "∈" , "∉" thích hợp cho ?
a) 2 ∈ A; b) 3 ∉ A; c) x ∈ A; d) p ∉ A;
e) 3 ∈ B; g) 1 ∉ B; h) m ∈ B; i) y ∉ B.
a)\(\frac{\sqrt[2]{X}+2}{\sqrt{x}-3}\)< 1 <=> \(\frac{\sqrt[2]{X}+2}{\sqrt{x}-3}\)- 1 < 0 <=> \(\frac{\sqrt{X}+2-\sqrt{x}+3}{\sqrt{x}-3}\)< 0 <=> \(\frac{5}{\sqrt{x}-3}\)< 0 Mà 5 > 0
=> \(\sqrt{x}-3< 0\)<=> \(\sqrt{X}< 3\)<=> \(x< 9\)
Câu b làm tương tự nha
b, \(A=\frac{\sqrt{x}+2}{\sqrt{x}-3}\le2\Leftrightarrow\frac{\sqrt{x}+2}{\sqrt{x}-3}-2\le0\)
\(\Leftrightarrow\frac{\sqrt{x}+2-2\sqrt{x}+6}{\sqrt{x}-3}\le0\Leftrightarrow\frac{-\sqrt{x}+8}{\sqrt{x}-3}\le0\)
TH1 : \(\hept{\begin{cases}8-\sqrt{x}\le0\\\sqrt{x}-3\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}-\sqrt{x}\le-8\\\sqrt{x}\ge3\end{cases}\Leftrightarrow\hept{\begin{cases}\sqrt{x}\ge8\\\sqrt{x}\ge3\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge64\\x\ge9\end{cases}\Leftrightarrow}x\ge64}\)
TH2 : \(\hept{\begin{cases}8-\sqrt{x}\ge0\\\sqrt{x}-3\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}\sqrt{x}\le8\\\sqrt{x}\le3\end{cases}\Leftrightarrow\hept{\begin{cases}x\le64\\x\le9\end{cases}}\Leftrightarrow x\le9}\)
Kết hợp với đk : \(0\le x< 9\)
code là mã số
code : mã số