K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 12 2021

a: Tọa độ giao điểm là:

\(\left\{{}\begin{matrix}2x-3=-x+6\\y=2x-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=3\end{matrix}\right.\)

29 tháng 4 2023

ĐKXĐ: \(m\ne1\)

Gọi \(\left(d'\right):y+2x-3=0\)

\(\Leftrightarrow\left(d'\right):y=-2x+3\)

Để \(\left(d\right)\perp\left(d'\right)\) thì: \(\left(m-1\right).\left(-2\right)=-1\)

\(\Leftrightarrow-2m+2=-1\)

\(\Leftrightarrow-2m=-3\)

\(\Leftrightarrow m=\dfrac{3}{2}\) (nhận)

\(\Rightarrow\left(d\right):y=\dfrac{1}{2}x+n+2\)

Thay tọa độ điểm A(2; 4) vào (d) ta được:

\(4=\dfrac{1}{2}.2+n+2\)

\(\Leftrightarrow1+n+2=4\)

\(\Leftrightarrow n=4-1-2\)

\(\Leftrightarrow n=1\)

Vậy \(m=\dfrac{3}{2};n=1\)

29 tháng 4 2023
6 tháng 3 2020

mỗi bài, mk làm một phần ví dụ cho cậu nhé

nó đối xứng với nhau qua pt đường thẳng đenta,

trường hợp (d) ko cắt (đen ta) hay (d) cắt (đen ta) thì đều làm theo phương pháp sau 

lấy 2 điểm bất kì thuộc (d) thì ta có như sau: A(0:1)  là điểm thuộc đường thẳng (d)

lấy A' đối xứng với A qua (đen ta) 

liên hệ tính chất đối xứng qua đường thẳng thì hiểu là AA' vuông góc (đen ta)

đồng thời giao điểm của  AA' với (đen ta) là trung điểm của  AA' 

dễ dàng tìm đc giao điểm của (đen ta) với (d) là K(-2/5;1/5)

từ pt (đenta) thì dễ dàng =) vecto pháp tuyến của (đenta) =) (3;-4) 

vì AA' vuông góc với (đenta) nên =) vectơ pháp tuyến của AA' là (4;-3)

áp véctơ pháp tuyến của AA' vào phương trình tổng quát đc: 4(x-0)-3(y-1)=0 (=) 4x-3y+3=0

gọi I là giao điểm của AA' và (đenta) =) I(-6/7;-1/7)

mà I là trung điểm của AA' 

chắc chắn cậu sẽ dễ dàng suy ra điểm A'

mà K và A' thuộc (d') nên dễ dàng =) phương trình của (d')

15 tháng 11 2021

a: Để (d)//y=-x+3m thì m-4=-1

hay m=3

AH
Akai Haruma
Giáo viên
15 tháng 11 2021

Lời giải:
Để $(d)$ song song với $y=-x+3m$ thì:

\(\left\{\begin{matrix} m-4=-1\\ -m+3\neq 3m\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} m=3\\ m\neq \frac{-3}{2}\end{matrix}\right.\Leftrightarrow m=3\)

31 tháng 5 2021

1.

\(\left(C\right):x^2+y^2-2x-4=0\)

\(\Leftrightarrow\left(x-1\right)^2+y^2=5\)

Đường tròn \(\left(C\right)\) có tâm \(I=\left(1;0\right)\), bán kính \(R=\sqrt{5}\)

Phương trình đường thẳng \(d_1\) có dạng: \(x+y+m=0\left(m\in R\right)\)

Mà \(d_1\) tiếp xúc với \(\left(C\right)\Rightarrow d\left(I;d_1\right)=\dfrac{\left|1+m\right|}{\sqrt{2}}=\sqrt{5}\)

\(\Leftrightarrow\left|m+1\right|=\sqrt{10}\)

\(\Leftrightarrow m=-1\pm\sqrt{10}\)

\(\Rightarrow\left[{}\begin{matrix}d_1:x+y-1+\sqrt{10}=0\\d_1:x+y-1-\sqrt{10}=0\end{matrix}\right.\)

31 tháng 5 2021

2.

Phương trình đường thẳng \(\Delta\) có dạng: \(x-y+m=0\left(m\in R\right)\)

Ta có: \(d\left(I;\Delta\right)=\sqrt{R^2-\dfrac{MN^2}{4}}=2\)

\(\Leftrightarrow\dfrac{\left|m+1\right|}{\sqrt{2}}=2\)

\(\Leftrightarrow m=-1\pm2\sqrt{2}\)

\(\Rightarrow\left[{}\begin{matrix}\Delta:x-y+1+2\sqrt{2}=0\\\Delta:x-y+1-2\sqrt{2}=0\end{matrix}\right.\)

NV
21 tháng 4 2023

a.

Pt hoành độ giao điểm (d) và (d'):

\(x+1=2x-2m-1\Leftrightarrow x=2m+2\)

\(\Rightarrow y=x+1=2m+3\)

2 đường thẳng cắt nhau tại 1 điểm nằm trong góc phần tư thứ II khi:

\(\left\{{}\begin{matrix}2m+2< 0\\2m+3>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m< -1\\m>-\dfrac{3}{2}\end{matrix}\right.\) \(\Rightarrow-\dfrac{3}{2}< m< -1\)

2 trục tung - hoành của hệ trục tọa độ cắt nhau chia mặt phẳng tọa độ làm 4 phần đánh dấu theo thứ tự ngược chiều kim đồng hồ, góc phần tư thứ I là phần tương ứng từ 12 giờ đến 3 giờ (ứng với x;y đều dương), góc phần tư thứ II từ 9 giờ đến 12h ( x âm y dương), góc III từ 6h đến 9h (x;y đều âm), góc IV từ 3h đến 6h (x dương  y âm)

NV
21 tháng 4 2023

b.

\(\Delta'=m^2-6m+9=\left(m-3\right)^2\ge0;\forall m\) nên pt luôn có 2 nghiệm

Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=-6\\x_1x_2=6m-m^2\end{matrix}\right.\)

Do \(x_1\) là nghiệm nên \(x_1^2+6x_1+6m-m^2=0\Leftrightarrow2x_1^2+12x_1=2m^2-12m\)

Từ đó:

\(x_1^3-x_2^3+2x_1^2+12x_1+72=0\)

\(\Leftrightarrow\left(x_1-x_2\right)\left(\left(x_1+x_2\right)^2-x_1x_2\right)+2m^2-12m+72=0\)

\(\Leftrightarrow\left(x_1-x_2\right)\left(36+m^2-6m\right)+2\left(m^2-6m+36\right)=0\)

\(\Leftrightarrow\left(x_1-x_2+2\right)\left(m^2-6m+36\right)=0\)

Do \(m^2-6m+36=\left(m-3\right)^2+27>0;\forall m\)

\(\Rightarrow x_1-x_2+2=0\)

Kết hợp \(x_1+x_2=-6\) \(\Rightarrow\left\{{}\begin{matrix}x_1-x_2=-2\\x_1+x_2=-6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1=-4\\x_2=-2\end{matrix}\right.\)

Thế vào \(x_1x_2=6m-m^2\)

\(\Rightarrow6m-m^2=8\Rightarrow m^2-6m+8=0\Rightarrow\left[{}\begin{matrix}m=2\\m=4\end{matrix}\right.\)

3 tháng 12 2021

\(c,\text{PTHĐGD }y=x+1\text{ và }\left(d\right):\\ x+1=2x-3\\ \Leftrightarrow x=4\Leftrightarrow y=5\Leftrightarrow A\left(4;5\right)\\ \text{Để 3 đt đồng quy }\Leftrightarrow A\left(4;5\right)\in y=\left(m-1\right)x+5\\ \Leftrightarrow4m-4+5=5\\ \Leftrightarrow m=1\)