K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 3 2016

=99:100

ai k minh minh k lai cho

8 tháng 3 2016

đáp số: 99:100

7 tháng 5 2016

Ta có : \(\frac{1}{1\times2}+\frac{1}{2\times3}+....+\frac{1}{99\times100}\)

\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

\(1-\frac{1}{100}=\frac{99}{100}\)

7 tháng 5 2016

Bài này lớp 6 phải không bạn

A=1/1-1/2+1/2-1/3+1/3-1/4+1/5-1/6+......................+1/99-1/100

A=1/1-1/100

A=99/100

Nếu bạn cảm thấy bài mình đúng thì cho mình một "lai"

30 tháng 3 2017

Ta có 99/1+98/2+97/3+...+1/99=(98/2+1)+(97/3+1)+...+(1/99+1)+1

=100/2+100/3+...+100/99+100/100

=100(1/2+1/3=1/4+1/5+...+1/99+1/100)

Vậy (1/2+1/3+...+1/100)/((99/1+98/2+...+1/99)=1/100

30 tháng 3 2017

xét mẫu số = \(\frac{99}{1}\)+\(\frac{98}{2}\)+....+\(\frac{1}{99}\)

mẫu số = (\(1+\frac{98}{2}\))+(\(1+\frac{97}{3}\))+.......+(\(1+\frac{1}{99}\))

mẫu số = \(\frac{100}{2}\)+\(\frac{100}{3}\)+....+\(\frac{100}{99}\)

mẫu số =100 x (\(\frac{1}{2}\)+\(\frac{1}{3}\)+....+\(\frac{1}{99}\))             (1)

thay (1) vào biểu thức trên

1/2+1/3+1/4+.....+1/100  /   100 x (1/2+1/3+...+1/99)

\(\frac{1}{100}\)

đặt \(B=\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\)

 \(\frac{99}{1}+\frac{98}{2}+...+\frac{1}{99}=\frac{100-1}{1}+\frac{100-2}{2}+...+\frac{100-99}{99}\)

\(=\frac{100}{1}-1+\frac{100}{2}-1+...+\frac{100}{99}-1=\left(\frac{100}{1}+\frac{100}{2}+...+\frac{100}{99}\right)-\left(1+1+...+1\right)\)

\(100+\left(\frac{100}{2}+\frac{100}{3}+...+\frac{100}{99}\right)-99=1+100\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}\right)=100\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)\(\Rightarrow\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}}{\frac{99}{1}+\frac{98}{2}+...+\frac{1}{99}}=\frac{B}{100B}=\frac{1}{100}\)

đặt \(B=\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\)

\(\frac{99}{1}+\frac{98}{2}+...+\frac{1}{99}=\frac{100-1}{1}+\frac{100-2}{2}+...+\frac{100-99}{99}=\frac{100}{1}-1+\frac{100}{2}-1+...+\frac{100}{99}-1\)

\(=\left(\frac{100}{1}+\frac{100}{2}+...+\frac{100}{99}\right)-\left(1+1+...+1\right)=100+100\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}\right)-99\)

\(=1+100\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}\right)=100\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)=100B\)

\(\Rightarrow\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}}{\frac{99}{1}+\frac{98}{2}+...+\frac{1}{99}}=\frac{B}{100B}=\frac{1}{100}\)

16 tháng 5 2015

Bài của Intelligent, bạn nguyen thieu cong thanh vừa làm rồi ! Bạn kéo xuống mà xem nha !

sao lại lấy ảnh của tui.

bài cậu hỏi tôi làm rồi đó

nhớ ****

16 tháng 5 2015

Sao lắm bài kiểu này thế !

5 tháng 7 2016

Xét : Với mọi \(x\in N^{\text{*}}\) , ta có : \(\frac{1}{\left(x+1\right)\sqrt{x}+x\sqrt{x+1}}=\frac{1}{\sqrt{x\left(x+1\right)}\left(\sqrt{x}+\sqrt{x+1}\right)}=\frac{\sqrt{x+1}-\sqrt{x}}{\sqrt{x\left(x+1\right)}}=\frac{1}{\sqrt{x}}-\frac{1}{\sqrt{x+1}}\) 

Áp dụng vào tính : \(M=\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+...+\frac{1}{100\sqrt{99}+99\sqrt{100}}=1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{99}}-\frac{1}{\sqrt{100}}=1-\frac{1}{10}=\frac{9}{10}\)

30 tháng 7 2018

\(\left(100+\frac{99}{2}+\frac{98}{3}+...+\frac{1}{100}\right):\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{101}\right)-2\)

\(=\frac{\left[\left(\frac{99}{2}+1\right)+\left(\frac{98}{3}+1\right)+...+\left(\frac{1}{100}+1\right)+\frac{101}{101}\right]}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{101}}-2\)

\(=\frac{\frac{101}{2}+\frac{101}{3}+...+\frac{101}{100}+\frac{101}{101}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{101}}-2\)

\(=\frac{101.\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{101}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{101}}-2\)

\(=101-2\)( vì \(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{101}\ne0\))

\(=99\)

Tham khảo nhé~

6 tháng 8 2017

Với mọi n thuộc N ta có :

\(\sqrt{\frac{1}{1^2}+\frac{1}{n^2}+\frac{1}{\left(n+1\right)^2}}=\sqrt{1+\frac{1}{n^2}+\frac{1}{\left(n+1\right)^2}+\frac{2}{n}-\frac{2}{n\left(n+1\right)}-\frac{2}{\left(n+1\right)}}\)

\(=\sqrt{\left(1+\frac{1}{n}-\frac{1}{n+1}\right)^2}=1+\frac{1}{n}-\frac{1}{n+1}\)

Áp dụng ta được :

\(S=\left(1+\frac{1}{2}-\frac{1}{3}\right)+\left(1+\frac{1}{3}-\frac{1}{4}\right)+....+\left(1+\frac{1}{99}-\frac{1}{100}\right)\)

\(=98+\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\right)\)

\(=98+\frac{1}{2}-\frac{1}{100}=\frac{9849}{100}\)