K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 5 2016

a) xét tam giác ABM và tam giác ACM ta có

AM=AM ( cạnh chung)

AB=AC( tam giác ABC cân tại A)

goc MAB = góc MAC ( AM là tia p.g góc BAC)

->tam giac ABM= tam giac ACM (c-g-c)

b)Xét tam giac ABC cân tại A ta có

AM la đường phân giác (gt)

-> AM là đường cao

-> AM vuông góc BC

mà NC vuông góc BC (gt)

nên AM//NC

ta có 

góc BAM = goc ANC (2 góc đồng vị và AM//CN)

góc CAM=góc ACN (2 góc sole trong và AM//CN)

góc BAM = góc CAM ( tam giac ABM= tam giac ACM)

-> goc ANC = góc ACN

=> tam giac ANC cân tại A

c)ta có

AB=AC ( tam giac ABC cân tại A)

AN=AC ( tam giac ANC cân tại A)

-> AB=AN

-> A là trung điểm BN

Xét tam giác ABC cân tại A ta có

AM là tia phấn giác góc BAC (gt)

-> AM là đường trung tuyến

-> M là trung điểm BC

Xét tam giac BCN ta có

CA là đường trung tuyến ( A là trung điểm BN)

NM là đường trung tuyến ( M là trung điểm BC)

CA cắt NM tại G (gt)

-> G là trọng tâm tam giac BCN

d)ta có MC=BC:2 ( M là trung điểm BC)

          MC=18:2=9 (cm)

Xét tam giác BNC ta có

NM là đường trung tuyến (M là trung điểm BC)

G là trọng tâm (cmc)

-> MG=1/3 MN->MN=3MG=3.5=15

Xét tam giác MNC vuông tại C ta có

MN2=NC2+MC2 ( định lý pitago)

152=NC2+92

NC2=152-92=144

NC=12

Bài1:Cho tam giác ABC,M là điểm nằm trong tam giác. Gọi D là giao điểm của AM và BC, E là giao điểm của BM và CA. F là giao điểm của CM và AB, đường thẳng đi qua M và song song với BC cắt DE, DF lần lượt tại K và I. Cmr MI=MK.Bài 2:Cho tam giác ABC, các đường trung tuyến BM, CN cắt nhau tại G, K là điểm trên cạnh BC, đường thẳng đi qua K và song song CN cắt AB ở D, đường thẳng đi qua K và song song với...
Đọc tiếp

Bài1:Cho tam giác ABC,M là điểm nằm trong tam giác. Gọi D là giao điểm của AM và BC, E là giao điểm của BM và CA. F là giao điểm của CM và AB, đường thẳng đi qua M và song song với BC cắt DE, DF lần lượt tại K và I. Cmr MI=MK.

Bài 2:Cho tam giác ABC, các đường trung tuyến BM, CN cắt nhau tại G, K là điểm trên cạnh BC, đường thẳng đi qua K và song song CN cắt AB ở D, đường thẳng đi qua K và song song với BM cắt AC ở E. Gọi I là giao điểm của KG và DE. Cmr I là trung điểm của DE.

Bài 3:Cho tam giác ABC đều. Gọi M, N là các điểm trên AB, BC sao cho BM=BN. Gọi G là trọng tâm của tam giác BMN. I là trung điểm của AN, P là trung điểm của MN.Cmr:

a, tam giác GPI và tam giác GNC đồng dạng.

b, IC vuông góc với GI.

Bài 4:Cho tam giác ABC vuông tại A, đường cao AH. I là trung điểm của AC, F là hình chiếu của I trên BC. Trên nửa mặt phẳng bờ là đường thẳng chứa AC, vẽ Cx vuông góc với AC cắt IF tại E. Gọi giao điểm của AH, AE với BI theo thứ tự G và K. Cmr:

a,Tam giác IHE và tam giác BHA đồng dạng.

b, Tam giác BHI và tam giác AHE đồng dạng.

c, AE vuông góc với BI.

LÀM ƠN HÃY GIÚP MÌNH NHA. MÌNH ĐANG RẤT VỘI. THANK KIU CÁC BẠN!!!😘😘😘

 

0
23 tháng 2 2023

a.Xét ΔDAB,ΔDMBΔ���,Δ��� có:

ˆDAB=ˆDMB(=90o)���^=���^(=90�)

Chung BD��
ˆABD=ˆMBD���^=���^

→ΔDAB=ΔDMB→Δ���=Δ���(cạnh huyền-góc nhọn)

b.Từ câu a →BA=BM,DA=DM→��=��,��=��

→B,D∈→�,�∈ trung trực AM��

→DB→�� là trung trực AM��

c.Ta có: DM⊥BC→KD⊥BC��⊥��→��⊥��

               CA⊥AB→CD⊥BK��⊥��→��⊥��

→D→� là trực tâm ΔBCKΔ���

→BD⊥CK→��⊥��

→BN⊥KC→��⊥��

Xét ΔBMK,ΔBACΔ���,Δ��� có:

Chung ^B�^

BM=BA��=��

ˆBMK=ˆBAC(=90o)���^=���^(=90�)

→ΔBMK=ΔBAC(c.g.c)→Δ���=Δ���(�.�.�)

→BK=BC→��=��

→ΔKBC→Δ��� cân tại B�

d.Ta có: ΔBCKΔ��� cân tại B,BN⊥CK→N�,��⊥��→� là trung điểm KC��

Trên tia đối của tia NP�� lấy điểm F� sao cho NP=NF��=��

Xét ΔNKP,ΔNCFΔ���,Δ��� có:

NK=NC��=��

ˆKNP=ˆCNF���^=���^

NP=NF��=��

→ΔNKP=ΔNCF(c.g.c)→Δ���=Δ���(�.�.�)

→KP=CF,ˆNKP=ˆNCF→KP//CF→CF//BP→��=��,���^=���^→��//��→��//��

Xét ΔFPC,ΔBPCΔ���,Δ��� có:

ˆCPF=ˆPCB���^=���^ vì NP//BC��//��

Chung NP��

ˆPCF=ˆCPB���^=���^ vì BP//CF��//��

→ΔFPC=ΔBCP(g.c.g)→Δ���=Δ���(�.�.�)

→CF=BP→��=��

→PK=BP→��=��

→P→� là trung điểm BK��

Do E,N�,� là trung điểm BC,CK��,��

→KE,BN,CP→��,��,�� đồng quy tại trọng tâm ΔKBCΔ��� 

DD
22 tháng 6 2021

Sửa đề chút. Tam giác \(ABC\)vuông tại \(A\).

a) \(I\)thuộc trung trực của \(AB\)nên \(IA=IB\)suy ra tam giác \(AIB\)cân tại \(I\).

Tam giác \(ABC\)vuông tại \(A\)có \(IA=IB\)\(I\in BC\)suy ra \(I\)là trung điểm của \(BC\)

suy ra \(IA=IB=IC\)\(\Rightarrow\Delta AIC\)cân tại \(I\).

b) Xét tam giác \(BCM\)có \(MI\perp BC,CA\perp MB\)và \(CA\)cắt \(MI\)tại \(N\)nên \(N\)là trực tâm của tam giác \(BCM\).

Suy ra \(EB\perp MC\).

c) \(N\)thuộc đường trung trực của \(BC\)nên \(NB=NC\)

suy ra \(\Delta NAB=\Delta NEC\)(cạnh huyền - góc nhọn) 

suy ra \(AB=EC\)

mà \(MB=MC\)(do \(M\)thuộc đường trung trực của \(BC\))

nên \(MB-AB=MC-EC\Leftrightarrow MA=ME\)

suy ra \(\widehat{MAE}=\frac{180^o-\widehat{AME}}{2}\)

mà \(\widehat{MBC}=\frac{180^o-\widehat{BMC}}{2}\)

mà hai góc này ở vị trí đồng vị do đó \(AE//BC\).

d) Có \(AE//BC\)suy ra \(\widehat{NAE}=\widehat{ACI}\)(hai góc so le trong) 

suy ra \(\widehat{NAE}=\widehat{NAI}\)(vì \(\widehat{IAC}=\widehat{ICA}\)do tam giác \(IAC\)cân tại \(I\))

Tam giác \(AIE\)có \(AN\)vừa là trung tuyến vừa là phân giác nên tam giác \(AIE\)cân tại \(A\).

suy ra tam giác \(AIE\)đều (vì \(IE=IA\)

suy ra \(\widehat{ACB}=\widehat{NAE}=\frac{1}{2}\widehat{EAI}=\frac{1}{2}.60^o=30^o\).

Vậy tam giác \(ABC\)có \(\widehat{ACB}=30^o\)thì \(N\)là trọng tâm tam giác \(AIE\).

1. Cho tam giác ABC vuông tại A. tia phân giác góc B cắt AC tại D. từ A kẻ AE vuông góc BD tại E và cắt BC tại MA. chứng minh tam giác ABC bằng tam giác MBEB. chứng minh DM vuông góc với BCC .Kẻ AH vuông góc với BC tại I. Chứng minh AM là tia phân giác của góc IACcâu 2: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ tia phân giác AD của góc A (D thuộc BC)A. chứng minh tam giác ABD bằng tam giác ACDB. Vẽ...
Đọc tiếp

1. Cho tam giác ABC vuông tại A. tia phân giác góc B cắt AC tại D. từ A kẻ AE vuông góc BD tại E và cắt BC tại M

A. chứng minh tam giác ABC bằng tam giác MBE

B. chứng minh DM vuông góc với BC

C .Kẻ AH vuông góc với BC tại I. Chứng minh AM là tia phân giác của góc IAC

câu 2: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ tia phân giác AD của góc A (D thuộc BC)

A. chứng minh tam giác ABD bằng tam giác ACD

B. Vẽ đường trung tuyến của tam giác ABC cắt cạnh AC tại G. chứng minh G là trọng tâm của tam giác ABC

C. Gọi H là trung điểm của cạnh DC. qua h Vẽ đường thẳng vuông góc với cạnh DC cắt cạnh AC tại E. Chứng minh tam giác DEC cân

D. Chứng minh ba điểm B, G, E thẳng hàng

Câu 3 Cho tam giác ABC vuông tại A. Vẽ trung tuyến AM của tam giác ABC, Kẻ MH vuông góc với AC. Trên tia đối của tia MH đặt điểm  K sao cho MK bằng MH

a. chứng minh tam giác MHC bằng tam giác MKB và BK vuông góc với KH

B. Chứng minh AB song song với HK và BK = AH.

C. Vẽ BH cắt AB tại g. Gọi I là trung điểm của AB. Chứng minh ba điểm C, G, I thẳng hàng

câu4 Cho tam giác ABC vuông tại A. gọi M là trung điểm cạnh BC. trên tia đối của tia MA lấy điểm D sao cho MD = MA.

A . chứng minh tam giác MCD bằng tam giác MBD và AC song song với BD

B. Gọi I là trung điểm AM, J là trung điểm BM. AJ cắt BI tại G. Chứng minh tam giác GAB là tam giác cân

Câu 5 cho tam giác ABC vuông tại A (AB bé hơn AC). vẽ BD là tia phân giác của góc ABC (D thuộc AC). trên đoạn BC lấy điểm E sao cho BE bằng BA

a chứng minh tam giác ABD bằng tam giác EBD .Từ đó suy ra góc BED là góc vuông

b.  tia ED  cắt tia BA tại EF. Chứng minh tam giác BED cân

C. Chứng minh tam giác AFC bằng tam giác  ECF

D.Chứng minh: AB + AC >DE+BC

câu 6: Cho tam giác ABC vuông tại A. Vẽ đường phân phân giác BD của tam giác ABC và E là hình chiếu của D trên BC

a. chứng minh tam giác ABD bằng tam giác EBD và AE vuông góc với BD

B. Gọi giao điểm của hai đường thẳng ED và BA là F. Chứng minh tam giác ABC bằng tam giác AFC 

C. Qua A vẽ đường thẳng vuông góc với BC cắt CF tại G. Chứng minh ba điểm B, D, G thẳng hàng

câu 7: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ AD là phân giác của góc A (D thuộc BC)

A . Chứng minh tam giác ABD bằng tam giác ACD

B. lấy H là trung điểm của AB. Trên tia đối của tia HC lấy điểm K sao cho HK = HC. Chứng minh rằng AK = BC

c. CH cắt AD tại G. Chứng minh (BA+BC)÷6 >GH

4
28 tháng 4 2019

bài 1 đề bài có sai ko?

29 tháng 4 2019

Đề đúng nha bạn

a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC

AH chung

=>ΔAHB=ΔAHC

b: AB=căn 4^2+3^2=5cm

c: Xét ΔABC có

H là trung điểm của BC

HM//AC

=>M là trung điểm của AB

Xét ΔABC có

CM,AH là trung tuyến

CM cắt AH tại G

=>G là trọng tâm