a+b=c-g=h+m=d-k=y+t=Q=26 Hỏi các chữ còn lại [ngoại trừ Q] là số gì ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có CCCCCCCCC = C .111111111 = 12345679 . C . 9
Ta tìm cách phân tích số CCCCCCCCC thành tích của hai số ABCDEFGH (Số có 8 chữ số) và AK (Số có 2 chữ số).
Xét lần lượt C = 1 ; 2; ...; 9 như sau:
- Với C = 1: Ta có CCCCCCCCC = = 111111111 = 12345679 . 9 là cách phân tích duy nhất thành một số có 8 chữ số với số có 1 chữ số. Vậy không thỏa mãn.
- Với C = 2: Ta có CCCCCCCCC = 222222222 = 12345679 . 2 . 9 = 12345679 . 18 là cách phân tích duy nhất thành một số có 8 chữ số với số có 2 chữ số. Tuy nhiên không phải dạng ABCDEFGH x AK = CCCCCCCCC (vì C trong ABCDEFGH bằng 3 trong khi C trong CCCCCCCCC lại bằng 2)
- Với C = 3: Ta có CCCCCCCCC = 333333333 = 12345679 . 3 . 9 = 12345679 . 27 là cách phân tích duy nhất thành một số có 8 chữ số với số có 2 chữ số. Tuy nhiên không phải dạng ABCDEFGH x AK = CCCCCCCCC (vì A trong ABCDEFGH bằng 1 trong khi A trong AK lại bằng 2)
- Với C = 4: Ta có CCCCCCCCC = 444444444 = 12345679 . 4 . 9 = 12345679 . 36 = 24691358 x 18. Có hai cách phân tích duy số 444444444 là 12345679 x 36 và 24691358 x 18, cả hai cách đều không thỏa mãn dạng ABCDEFGH x AK = CCCCCCCCC
Cứ xét tiếp tục ta sẽ thấy với C = 6 thì:
666666666 = 12345679 x 6 x 9 = 12345679 x 54 = 24691358 x 27 = 37037037 x 18
Có 3 cách biểu diễn số 666666666 thành tích của số có 8 chữ số và số có 2 chữ số. Chỉ có duy nhất cách 666666666 = 24691358 x 27 là thỏa mãn dạng CCCCCCCCC = ABCDEFGH x AK.
Vậy phép nhân thỏa mãn điều kiện bài toán là: 24691358 x 27 = 666666666.
và bằng
A+S+D+F+G+H+J+K+L+M+NB++V+C+X+Z+Q+W+E+R+T+Y+U+I+O+P-A-S-D-F-G-H-J-K-L-MN-B-V-C-XZ-Q-W-E-R--T-Y-U-I-O-P/AS/D/F/G/H/J/K/L/M/N/B/V/C/X/Z/Q//W/E/R/T/Y/U/I/O/P/
Câu 5:
Tương tự câu 4, ta thấy tâm $I$ của khối cầu ngoại tiếp $S.ABCD$ là trung điểm $SC$
Theo định lý Pitago:
$SA^2=SB^2-AB^2=(a\sqrt{3})^2-a^2=2a^2$
$AC^2=AB^2+BC^2=a^2+a^2=2a^2$
$SC=\sqrt{SA^2+AC^2}=\sqrt{2a^2+2a^2}=2a$
Do đó: $R=SI=IC=\frac{SC}{2}=a$
Thể tích khối cầu ngoại tiếp S.ABCD là:
$V=\frac{4}{3}\pi R^3=\frac{4}{3}\pi a^3$
Đáp án A
Câu 4:
$AC=\sqrt{AB^2+AD^2}=2a$
$(SC, (ABCD))=\widehat{SCA}=60^0$
$\Rightarrow \frac{SA}{AC}=\tan \widehat{SCA}=\tan 60^0=\sqrt{3}$
$\Rightarrow SA=\sqrt{3}.AC=2\sqrt{3}a$
$SC=\sqrt{SA^2+AC^2}=\sqrt{(2\sqrt{3}a)^2+(2a)^2}=4a$
Gọi $I$ tâm mặt cầu ngoại tiếp hình chóp. $IS=IA=IC$ nên $I$ là tâm ngoại tiếp tam giác $SAC$
$\Rightarrow I$ là trung điểm $SC$.
Bán kính $IS=IC=\frac{AC}{2}=\frac{4a}{2}=2a$
Đáp án A
Ta có CCCCCCCCC = C .111111111 = 12345679 . C . 9
Ta tìm cách phân tích số CCCCCCCCC thành tích của hai số ABCDEFGH (Số có 8 chữ số) và AK (Số có 2 chữ số).
Xét lần lượt C = 1 ; 2; ...; 9 như sau:
- Với C = 1: Ta có CCCCCCCCC = = 111111111 = 12345679 . 9 là cách phân tích duy nhất thành một số có 8 chữ số với số có 1 chữ số. Vậy không thỏa mãn.
- Với C = 2: Ta có CCCCCCCCC = 222222222 = 12345679 . 2 . 9 = 12345679 . 18 là cách phân tích duy nhất thành một số có 8 chữ số với số có 2 chữ số. Tuy nhiên không phải dạng ABCDEFGH x AK = CCCCCCCCC (vì C trong ABCDEFGH bằng 3 trong khi C trong CCCCCCCCC lại bằng 2)
- Với C = 3: Ta có CCCCCCCCC = 333333333 = 12345679 . 3 . 9 = 12345679 . 27 là cách phân tích duy nhất thành một số có 8 chữ số với số có 2 chữ số. Tuy nhiên không phải dạng ABCDEFGH x AK = CCCCCCCCC (vì A trong ABCDEFGH bằng 1 trong khi A trong AK lại bằng 2)
- Với C = 4: Ta có CCCCCCCCC = 444444444 = 12345679 . 4 . 9 = 12345679 . 36 = 24691358 x 18. Có hai cách phân tích duy số 444444444 là 12345679 x 36 và 24691358 x 18, cả hai cách đều không thỏa mãn dạng ABCDEFGH x AK = CCCCCCCCC
Cứ xét tiếp tục ta sẽ thấy với C = 6 thì:
666666666 = 12345679 x 6 x 9 = 12345679 x 54 = 24691358 x 27 = 37037037 x 18
Có 3 cách biểu diễn số 666666666 thành tích của số có 8 chữ số và số có 2 chữ số. Chỉ có duy nhất cách 666666666 = 24691358 x 27 là thỏa mãn dạng CCCCCCCCC = ABCDEFGH x AK.
Vậy phép nhân thỏa mãn điều kiện bài toán là: 24691358 x 27 = 666666666.
Đáp án
Ta có CCCCCCCCC = C .111111111 = 12345679 . C . 9
Ta tìm cách phân tích số CCCCCCCCC thành tích của hai số ABCDEFGH (Số có 8 chữ số) và AK (Số có 2 chữ số).
Xét lần lượt C = 1 ; 2; ...; 9 như sau:
- Với C = 1: Ta có CCCCCCCCC = = 111111111 = 12345679 . 9 là cách phân tích duy nhất thành một số có 8 chữ số với số có 1 chữ số. Vậy không thỏa mãn.
- Với C = 2: Ta có CCCCCCCCC = 222222222 = 12345679 . 2 . 9 = 12345679 . 18 là cách phân tích duy nhất thành một số có 8 chữ số với số có 2 chữ số. Tuy nhiên không phải dạng ABCDEFGH x AK = CCCCCCCCC (vì C trong ABCDEFGH bằng 3 trong khi C trong CCCCCCCCC lại bằng 2)
- Với C = 3: Ta có CCCCCCCCC = 333333333 = 12345679 . 3 . 9 = 12345679 . 27 là cách phân tích duy nhất thành một số có 8 chữ số với số có 2 chữ số. Tuy nhiên không phải dạng ABCDEFGH x AK = CCCCCCCCC (vì A trong ABCDEFGH bằng 1 trong khi A trong AK lại bằng 2)
- Với C = 4: Ta có CCCCCCCCC = 444444444 = 12345679 . 4 . 9 = 12345679 . 36 = 24691358 x 18. Có hai cách phân tích duy số 444444444 là 12345679 x 36 và 24691358 x 18, cả hai cách đều không thỏa mãn dạng ABCDEFGH x AK = CCCCCCCCC
Cứ xét tiếp tục ta sẽ thấy với C = 6 thì:
666666666 = 12345679 x 6 x 9 = 12345679 x 54 = 24691358 x 27 = 37037037 x 18
Có 3 cách biểu diễn số 666666666 thành tích của số có 8 chữ số và số có 2 chữ số. Chỉ có duy nhất cách 666666666 = 24691358 x 27 là thỏa mãn dạng CCCCCCCCC = ABCDEFGH x AK.
Vậy phép nhân thỏa mãn điều kiện bài toán là: 24691358 x 27 = 666666666.
câu c tớ không chắc nha
Đường tròn t vẽ không chính xác lắm bạn tự sửa lại nha
Câu 4: Cho G là một điểm thuộc đoạn thẳng HK. Hỏi trong ba điểm G, H, K, điểm nào nằm giữa hai điểm còn lại?
a, Điểm H
b, Điểm K
c, Điểm G
d, Không có điểm nào nằm giữa hai điểm còn lại