Cho a3-3ab2=5 và b3-3a2b=10 .Tính S=2018a2+2018b2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(a-b)^2=(a-b)(a-b)=a^2-ab-ab+b^2=a^2-2ba+b^2
(a-b)(a+b)=a^2+ab-ab-b^2=a^2-b^2
(a+3)^3=(a+b)^2*(a+b)
=(a^2+2ab+b^2)(a+b)
=a^3+a^2b+2a^2b+2ab^2+b^2a+b^3
=a^3+3a^2b+3ab^2+b^3
đề hơi sai chỉnh lại nha mọi ngừi Bài 17. Cho tam giác ABC (AB=AC) có góc ở đỉnh bằng 20 độ; cạnh đáy là a ; cạnh bên là b . Chứng minh rằng a3 + b3 = 3ab2
1. b3+b= 3
(b3+b)=3
b.(3+1)=3
b. 4= 3
b=\(\dfrac{3}{4}\)
a3+a= 3 b3
(a3+a)=3
a.(3+1)=3
a. 4= 3
a=\(\dfrac{3}{4}\)
2
Đáp án A
Ta có 2 x . 15 x + 1 = 3 x + 3 ⇔ 2 x . 5 x + 1 = 3 2 ⇔ log 2 x . 5 x + 1 = log 3 2 ⇔ x log 2 + x + 1 log 5 = 2 log 3
⇔ x log 2 + log 5 = 2 log 3 - log 5 ⇔ x = 2 log 3 - log 5 log 2 + log 5 = 2 log 3 - log 5 ⇒ a = 3 b = 5 .
Vậy S = 4009.
\(\left(a^3-3ab^2\right)^2=25\Leftrightarrow a^6-6a^4b^2+9a^2b^4=25\)
\(\left(b^3-3a^2b\right)^2=100\Leftrightarrow b^6-6a^2b^4+9a^4b^2=100\)
\(\Rightarrow a^6-6a^4b^2+9a^2b^4+b^6-6a^2b^4+9a^4b^2=125\)
\(\Leftrightarrow\left(a^2+b^2\right)^2=125\Leftrightarrow a^2+b^2=5\)
Thay a2+b2=5 vào S=2018a2+2018b2=2018(a2+b2)=2018.5=10090