Chứng minh dãy số nguyên tó là vô hạn.
Thanks trước nha mọi người!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
P>3 suy ra P có dạng 3k+1 hoặc 3k+2
nếu P=3k+1 thì P+14=3k+1+14=3k+15 là hợp số (trái đề bài)
nếu P=3k+2 thì P+14=3K+2+14=3K+16 có thể là số nguyên tố(chọn)
P+7=3k+2+7=3k+9 là hợp số(đpcm)
gọi UWCLN(2n+3;3n+4) là d
2n +3 chia hết cho d, 3n+4 chia hết cho d
2n.3+3.3 chia hết cho d, 3n.2+4.2 chia hết cho d
6n +9 chia hết cho d, 6n+8 chia hết cho d
6n +9- 6n+ 8 chia hết cho d
6n +9- 6n- 8 chia hết cho d
1 chia hết cho d
d=1
với mọi giá trị của số tự nhiên n thì 2n + 3, 3n + 4 là hai số nguyên tố cùng nhau.
Cho mình hỏi tại sao đoạn đầu bạn lại tách 2n +3 thành 2n.3 +3.3 và 3n +4 thành 3n.2 +4.2 vậy ạ?
Mới học lớp 5,ko biết làm!!!