Cho hcn ABCD,có diện tích = 2400 cm2 và cr AD=40cm.M là trung điểm của AD,nối M với C.N là trung điểm CD , nối B với N cắt CM tại O. Tính diện tích tứ giác ABOM
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S(ABCD)=600.S(NBC)=S(ABM)=150.S(ABC)=300..S(ANC)=S(AMC)=1/4S(ABCD).
Gọi MH và NI lần lượt là chiều cao của tam giác ANC và AMC.
MH=NI( dt ANC=AMC và chung đáy AC).
S(MFC)=S(NFC)(chung đáy FC và chiều cao MH=NI).
S(MFC)=S(MFB) (chung chiều cao hạ từ Fxuống BC và đáy MC=MB)
suy ra S(FMC)=1/3S(NBC)=1/3× 150
=50.S(AFM)
=S(ABC)-S(FMC)-S(ABM)
=300-50-150=100
S(BMN)=1/4S(ABN)
Gọi MK và AG lần lượt là chiều cao của tam giác BMN và ABN.
Suy ra: MK=1/4AG(▲ BMN=1/4▲ABN và chung đáy NB).
S(MEF)=1/4S(AEF)(chung đáy EF và chiều cao MK=1/4AG) hay S(AEF)=4/5×S(AMF)=4/5×100=80
S(ABCD)=600.S(NBC)=S(ABM)=150.S(ABC)=300..S(ANC)=S(AMC)=1/4S(ABCD). Gọi MH và NI lần lượt là chiều cao của tam giác ANC và AMC. MH=NI( dt ANC=AMC và chung đáy AC). S(MFC)=S(NFC)(chung đáy FC và chiều cao MH=NI). S(MFC)=S(MFB) (chung chiều cao hạ từ Fxuống BC và đáy MC=MB) suy ra S(FMC)=1/3S(NBC)=1/3× 150 =50.S(AFM) =S(ABC)-S(FMC)-S(ABM) =300-50-150=100 S(BMN)=1/4S(ABN) Gọi MK và AG lần lượt là chiều cao của tam giác BMN và ABN. Suy ra: MK=1/4AG( tam giác BMN=1/4tam giác ABN và chung đáy NB). S(MEF)=1/4S(AEF)(chung đáy EF và chiều cao MK=1/4AG) hay S(AEF)=4/5×S(AMF)=4/5×100=80
Giả sử điểm M nằm trên điểm D (tức là điểm M chính là điểm D):
Ta thấy: độ dài đáy của hình tam giác MNI bằng 1/3 độ dài đáy của hình tam giác AIM nhưng chiều cao vẵn bằng nhau.
Diện tích hình tam giác AIM là:
15 : 1/3 = 45 (cm2)
Ta thấy: độ dài đáy của hình tam giác AIM bằng chiều rộng của hình chữ nhật ABCD; chiều cao của hình tam giác AIM bằng 1/2 chiều dài của hình chữ nhật ABCD. Mà diện tích hình tam giác phải chia cho 2 nên diện tích hình tam giác AIM bằng 1/4 diện tích hình chữ nhật ABCD.
Diện tích hình chữ nhật ABCD là:
45 : 1/4 = 180 (cm2)
Đáp số: 180 cm2
Nối AM. Xét hai tam giác MNI và tam giác MAI có chung đường cao hạ từ M xuống AI
S(MNI)/S(MAI)=NI/AI=1/3 => S(MAI)=3xS(MNI)=45 cm2
Xét hai tam giác MAI và tam giác BAI có chung đường cao từ A xuống BM
S(MAI)/S(BAI)=MI/BI=1 => S(BAI)=45 cm2
=>S(AMB)=S(MAI)+S(BAI)=45+45=90cm2 =1/2xABxAD
Ta có
S=S(ADM)+S(BCM)=(ADxDM/2)+(BCxCM/2)=1/2xADx(DM+CM) (Vì AD=BC)
S=1/2xADxCD
Do AB=CD nên S(AMB)=S=90 cm2
S(ABCD)=S(AMB)+S=90+90=180 cm2
Ta có:
*S ABCD = S ABC + S ACD
Hay
S ABCD = S 1 + S 2 + S 3 + S 4 + S 5 + S 6 + S 7 + S 8
*Vì MB = MC nên:
S1 + S2 = S ABC : 2 ( Tam giác ABM và ABC có chung đường cao hạ từ A và BM = BC : 2 )
*Tương tự: S 7 + S 8 = S ACD : 2 ( Tam giác CED và ACD có chung đường cao hạ từ C và DE = AD : 2 )
*Do đó:
S 1 + S 2 + S 7 + S 8 = S 3 + S 4 + S 5 + S 6 = S ABCD : 2
*Lại có:
S 2 + S 3 = S 5 + S 6 (Hai tam giác BME và CME có chung đường cao hạ từ E và BM = CM)
S 5 + S 8 = S 3 + S 4 (Hai tam giác AME và DME có chung đường cao hạ từ M và ED = EA)
==>S 2 + S 8 = S 4 + S 6
*Vì S 1 + S 7 + (S 2 + S 8) = S 3 + S 5 + (S 4 + S 6) mà S 2 + S 8 = S 4 + S 6
Nên S 1 + S 7 = S 3 + S 5
==>S 3 + S 5 = 3 cm2 + 5 cm2 = 8 cm2
Hay SEHKMN = 8 cm2
Đáp số : 8 cm2