K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 3 2016

x=(40-15)/5=5

8 tháng 3 2016

Bằng 5

Nhớ tích nha

6 tháng 9 2023

a, Ta thấy: \(\sqrt{x}\ge0\forall x\) (ĐK: \(x\ge0\))

\(\Rightarrow\sqrt{x}+10\ge10\forall x\)

\(\Rightarrow\dfrac{1}{\sqrt{x}+10}\le\dfrac{1}{10}\forall x\)

\(\Rightarrow Max_A=\dfrac{1}{10}\Leftrightarrow\dfrac{1}{\sqrt{x}+10}=\dfrac{1}{10}\)

\(\Leftrightarrow\sqrt{x}+10=10\)

\(\Leftrightarrow\sqrt{x}=0\)

\(\Leftrightarrow x=0\left(tm\right)\)

b, Ta có: \(\sqrt{x}\ge0\forall x\) (ĐK: \(x\ge0;x\ne4\))

\(\Rightarrow-\sqrt{x}\le0\forall x\)

\(\Rightarrow2-\sqrt{x}\le2\forall x\)

\(\Rightarrow\dfrac{4}{2-\sqrt{x}}\ge\dfrac{4}{2}=2\)

\(\Rightarrow Min_B=2\Leftrightarrow\dfrac{4}{2-\sqrt{x}}=2\)

\(\Leftrightarrow2-\sqrt{x}=2\)

\(\Leftrightarrow\sqrt{x}=0\)

\(\Leftrightarrow x=0\left(tm\right)\)

Vậy ...

#Urushi

a: ĐKXĐ: x>=0

\(\sqrt{x}+10>=10\) với mọi x thỏa mãn ĐKXĐ
=>\(A=\dfrac{1}{\sqrt{x}+10}< =\dfrac{1}{10}\) với mọi x thỏa mãn ĐKXĐ

Dấu = xảy ra khi x=0

=>Amax=1/10 khi x=0

b:Sửa đề: B nhỏ nhất

 ĐKXĐ: x>=0; x<>4

\(2-\sqrt{x}< =2\)

=>\(B=\dfrac{4}{2-\sqrt{x}}>=\dfrac{4}{2}=2\)

Dấu = xảy ra khi x=0

5 tháng 3 2022

ta có (3lxl+2)/(4lxl-5) đạt giá trị lớn nhất khi mẫu bằng 1

=>4x-5=1

x=1+5=6

x=6/4=3/2

vậy x =3/2

thay x vào bt ta đc 3x+2=3*3/2+2=6,5

6 tháng 6 2021

Câu hỏi đâu bn??

6 tháng 6 2021

đấy mk sửa lại rùi đó

5 tháng 3 2022

ta có (3lxl+2)/(4lxl-5) đạt giá trị lớn nhất khi mẫu bằng 1

=>4x-5=1

x=1+5=6

x=6/4=3/2

vậy x =3/2

thay x vào bt ta đc 3x+2=3*3/2+2=6,5

11 tháng 7 2023

a) \(A=\dfrac{3}{x-1}\)

Điều kiện \(|x-1|\ge0\)

\(\Rightarrow A=\dfrac{3}{x-1}\ge0\)

\(GTNN\left(A\right)=0\) \(\Rightarrow x-1=+\infty\Rightarrow x\rightarrow+\infty\)

b) \(GTLN\left(A\right)\) không có \(\left(A=\dfrac{3}{x-1}\ge0\right)\)

 

13 tháng 9 2019

Ta đặt t = \(\frac{1}{2004y}\)

Bài toán được đưa về tìm x để t bé nhất :
 Ta có \(t=\frac{\left(x+2004\right)^2}{2004x}=\frac{x^2+2.2004x+2004^2}{2004x}=\frac{x}{2004}+2+\frac{2004}{x}=\frac{x^2+2004^2}{2004x}+2\) ( 1 )

Ta thấy : Theo bất đẳng thức Côsi cho 2 số dương ta có :

\(x^2+2004^2\ge2.2004.x\Rightarrow\frac{x^2+2004^2}{2004x}\ge2\) ( 2 )

Dấu " = " xảy ra khi x = 2004 

Từ ( 1 ) và ( 2 ) \(\Rightarrow t\ge4\Rightarrow\) giá trị bé nhất của t = 4 khi x = 2004 

Vậy \(y_{max}=\frac{1}{2004t}=\frac{1}{8016}\) . Khi \(x=2004\)

Chúc bạn học tốt !!!

a, x thuộc ƯC (54, 12) và x lớn nhất => x = ƯCLN (54, 12)

54 = 2 . 33

12 = 22 . 3

ƯCLN (54, 12) = 2 . 3 = 6

Vậy x = 6.

b, 24 : x, 36 : x , 160 : x và x lớn nhất => x = ƯCLN (24, 36, 160).

24 = 23 . 3

36 = 22 . 32

160 = 25 . 5

ƯCLN (24, 36, 160) = 22 = 4

Vậy x = 4.

c, Tìm số tự nhiên a lớn nhất biết rằng 420 : a, 700 : a => a = ƯCLN (420, 700)

420 = 2. 3 . 5 . 7

700 = 22 . 52 . 7

ƯCLN (420, 700) = 22 . 5 . 7 = 140.

Vậy a = 140

8 tháng 2 2021
Ta có: 54 = 2•3^3 12 = 2^2 • 3 => ƯCLN ( 54; 12 ) = 2•3 = 6 Vậy x thuộc Ư (6) và x lớn nhất => x = 6