K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 7 2017

chắc đề sai đó bn

mà mấy bài này bạn chứng minh bằng quy nạp là ra

10 tháng 11 2017

với dạng bài này ta phải tách số bị chia thành tổng hoặc hiệu 2 số trong đó có một số chia hết cho số chia

câu a)  2n +5 = 2n -1 +6

vì 2n -1 chia hết cho 2n -1  nên để 2n +5 chia hết cho 2n -1 khi 6 chia hết cho 2n -1

suy ra 2n -1 là ước của 6

vì 2n -1 là số lẻ nên 2n -1 \(\in\) {1;3}

n=1; 2

23 tháng 2 2021

a)Ta có: 2n+9 chia hết n+3

<=>(2n+9)-2(n+3) chia hết n+3

<=>(2n+9)-(2n+6) chia hết n+3

<=>3 chia hết n+3

<=>n+3 thuộc {1;3}

<=>n=0

Vậy n = 0

b) Ta có 3n-1 chia hết cho 3-2n

=> 6n-2 chia hết cho 3-2n

=> 3(3-2n)-11 chia hết cho 3-2n

=> 11 chia hết cho 3-2n

=> 3-2n là ước của 11 và n là số tự nhiên => 3-2n thuộc {1;11}

• 3-2n=1 => n=1

• 3-2n=11=> n ko là số tự nhiên

Vậy n=1

c) (15 - 4n) chia hết cho n

=> 15 chia hết cho n
=> n ∈ Ư(15) = {-15; -5; -3; -1; 1; 3; 5; 15}
mà n ∈ N và n < 4
=> n = {1; 3}

d)  n=7 vì (n+13)chia hết cho (n-5) và n lớn hơn 5 

e) 15-2n = 13+ (2-2n) = 13+2(1-n) : n-1 = 

13n-1-2

=> n-1 là ước dương của 13

=> n-1 = 13 hoặc n-1 = 1 hoặc n = -1 hoặc n=-13

=> n=14 hoặc n= 2 hoặc n=0 howjc n=-12

Mà n thuộc N và n<8 => n=0 hoặc n=2

g)

6n+9⋮4n−1

⇒2.(6n+9)⋮4n−1

⇒12n+18⋮4n−1

⇒12n−3+21⋮4n−1

⇒3.(4n−1)+21⋮4n−1

Vì 3.(4n−1)⋮4n−1⇒21⋮4n−1

Mà 4n - 1 chia 4 dư 3; 4n−1≥−1 do n∈N

⇒4n−1∈{−1;3;7}

⇒4n∈{0;4;8}

3 tháng 1 2016

giải cả cách làm giùm mk dc k

 

22 tháng 2 2019

(3n+2):(n-1) = 3 + 5/(n-1) 
a)Để 3n+2 chia hêt cho n-1 
thì n-1 phải là ước của 5 
do đó: 
n-1 = 1 => n = 2 
n-1 = -1 => n = 0 
n-1 = 5 => n = 6 
n-1 = -5 => n = -4 
Vậy n = {-4; 0; 2; 6} 
thì 3n+2 chia hêt cho n-1.

22 tháng 2 2019

c)3n+2 chia hết cho 2n-1

6n-3n+2 chia hết cho 2n-1

3(2n-1)+2 chia hết cho 2n-1

=>2 chia hết cho 2n-1 hay 2n-1 thuộc Ư(2)={1;-1;2;-2}

=>2n thuộc{2;0;3;-1}

=>n thuộc{1;0}

23 tháng 10 2017

120 chia hết co n-1

=> n-1 thuộc Ư(120)

=> n-1 thuộc {1;120;2;60;3;40;4;30;5;24;6;20;8;15;10;12}

=> n thuộc {1+1 ; 120+1 ; 60+1 ; 3+1 ; 40+1 ; 4+1 ; 30+1 ; 5+1 ; 24+1 ; 6+1 ; 20+1 ; 8+1 ; 15+1 ; 10+1 ; 12+1}

=> n thuộc {2;121;61;4;41;5;31;6;25;7;21;9;16;11;13}

vậy n thuộc {2;121;61;4;41;5;31;6;25;7;21;9;16;11;13}

10 chia hết cho n

=> n thuộc Ư(10)

=> n thuộc {1;10;2;5}

vậy n thuộc {1;2;5;10}

20 chia hết cho 2n+1

=>2n+1 thuộc Ư(20)

=>2n+1 thuộc {1;20;2;10;4;5}

=>2n thuộc {1-1;20-1;2-1;10-1;4-1;5-1}

=>2n thuộc (0;19;1;9;3;4)

xét 2n=0

        n=0 : 2 =0 thuộc N(chọn)

xét 2n=19

        n=19 : 2=9,5 không thuộc N(loại)

xét 2n=1

        n=1 : 2 =0,5 không thuộc N(loại)

xét 2n=9

        n=9 : 2 =4,5 không thuộc N(loại)

xét 2n=3

        n=3 : 2 =1,5 không thuộc N(loại)

xét 2n=4

        n=4 : 2=2 thuộc N(chọn)

vậy n thuộc {0;2}

30 tháng 11 2017

ta có 4n+ 7 chia hết cho 2n +1 (1)
2n+ 1 chia hết cho 2n+1
=> 2(2n+1) chia hết cho 2n+1
=> 4n+2 chia hết cho 2n+1 (2)
từ (1) và (2)