tìm n biết 2 mũ n+1 : 4 mũ 2 =1024
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,2^n=16\Leftrightarrow2^n=2^4\Leftrightarrow n=4\)
\(3^n=243\Rightarrow3^n=3^5\Leftrightarrow n=5\)
\(b,4^n=4096\Rightarrow4^n=4^6\Leftrightarrow n=6\)
\(5^n=15625\Rightarrow5^n=5^6\Leftrightarrow n=6\)
\(c,6^{n+3}=216\Rightarrow6^{n+3}=6^3\Rightarrow n+3=3\Leftrightarrow n=0\)
\(4^{n-1}=1024\Rightarrow4^{n-1}=4^5\Rightarrow n-1=5\Leftrightarrow n=6\)
\(a.\) \(2^n=16\Rightarrow2^n=2^4\Leftrightarrow n=4\)
\(3^n=243\Rightarrow3^n=3^5\Leftrightarrow n=5\)
\(b.\) \(4^n=4096\Rightarrow4^n=4^6\Rightarrow n=6\)
\(5^n=15625\Rightarrow5^n=5^6\Rightarrow n=6\)
\(c.\) \(6^{n+3}=216\Rightarrow6^{n+3}=6^3\Rightarrow n+3=3\Rightarrow n=0\)
\(4^{n-1}=1024\Rightarrow4^{n-1}=4^5\Rightarrow n-1=5\Rightarrow n=6\)
a) \(4^n=4096\Rightarrow4^n=4^6\Rightarrow n=6\)
b) \(5^n=15625\Rightarrow5^n=5^6\Rightarrow n=6\)
c) \(6^{n+3}=216\Rightarrow6^{n+3}=6^3\Rightarrow n+3=3\Rightarrow n=0\)
d) \(x^2=x^3\Rightarrow x^3-x^2=0\Rightarrow x^2\left(x-1\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x-1=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
e) \(3^{x-1}=27\Rightarrow3^{x-1}=3^3\Rightarrow x-1=3\Rightarrow x=4\)
f) \(3^{x+1}=9\Rightarrow3^{x+1}=3^2\Rightarrow x+1=2\Rightarrow x=1\)
g) \(6^{x+1}=36\Rightarrow6^{x+1}=6^2\Rightarrow x+1=2\Rightarrow x=1\)
h) \(3^{2x+1}=27\Rightarrow3^{2x+1}=3^3\Rightarrow2x+1=3\Rightarrow2x=2\Rightarrow x=1\)
i) \(x^{50}=x\Rightarrow x^{50}-x=0\Rightarrow x\left(x^{49}-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x^{49}-1=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=0\\x^{49}=1=1^{49}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
4n = 4096
4n = 212
n = 12
5n = 15625
5n = 56
n = 6
6n+3 = 216
6n+3 = 23.33
6n+3 = 63
n + 3 = 3
\(2^{n+1}:4^2=1024\)
\(=>2^{n+1}:\left(2^2\right)^2=2^{10}\)
\(2^{n+1}:2^4=2^{10}\)
\(2^{n+1}=2^{10}\cdot2^4\)
\(2^{n+1}=2^{14}\)
\(=>n+1=14\)
\(n=14-1\)
\(n=13\)
Vậy n = 13
b: Ta có: \(2^{x+3}+2^x=144\)
\(\Leftrightarrow2^x\cdot9=144\)
\(\Leftrightarrow2^x=16\)
hay x=4
Lời giải:
$A=5^{50}-5^{48}+5^{46}-5^{44}+....-5^4+5^2-1$
$5^2A=5^{52}-5^{50}+5^{48}-5^{46}+...-5^6+5^4-5^2$
$\Rightarrow A+5^2A=5^{52}-1$
$\Rightarrow 26A=5^{52}-1$
$\Rightarrow 5^{52}-1+1=5^n$
$\Rightarrow 5^{52}=5^n$
$\Rightarrow n=52$
a) \(11^n=1331\)
\(\Rightarrow11^n=11^3\)
\(\Rightarrow n=3\)
b) \(n^3=125\)
\(\Rightarrow n^3=5^3\)
\(\Rightarrow n=5\)
c) \(5^4=n\)
\(\Rightarrow625=n\)
\(\Rightarrow n=625\)
d) \(\left(n+1^2\right)=9\)
\(\Rightarrow n+1=9\)
\(\Rightarrow n=9-1\)
\(\Rightarrow n=8\)
a) 11^n = 1331
⇒ 11^n = 11^3
⇔ n = 3
b) n^ 3 = 125
⇒ n^3 = 5^3
⇔ n = 5
c) 5^4 = n
⇒ n = 625
d) ( n + 1^2 ) = 9
⇒ ( n + 1 ) = 9
⇒ n = 8
2n+1:42=1024
2n+1:16=1024
2n+1 =1024:16
2n+1 =64
2n+1 =26
n+1 =6
n =6-1
n =5
2n + 1 : 42 = 1024
2n + 1 : 24 = 210
2n + 1 = 26
n + 1 = 6
n = 5