Cho pt:
1/x2+4x+3 + 1/x2+8x+15 + 1/x2+12+35 + 1/x2+16x+63 =1/5 . Tổng bình phương các nghiệm của pt trên là :......
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\text{Δ}=\left(2m-6\right)^2-4\left(m^2+3m+2\right)\)
\(=4m^2-24m+36-4m^2-12m-8=-36m+28\)
Để phương trình có hai nghiệm thì -36m+28>=0
=>-36m>=-28
hay m<=7/9
Theo đề, ta có:
\(\left(x_1+x_2\right)^2-2x_1x_2=100\)
\(\Leftrightarrow\left(\dfrac{2m-6}{m+1}\right)^2-2\cdot\dfrac{m+2}{m+1}=100\)
\(\Leftrightarrow\dfrac{\left(2m-6\right)^2-2\left(m^2+3m+2\right)}{\left(m+1\right)^2}=100\)
\(\Leftrightarrow4m^2-24m+36-2m^2-6m-4=100\left(m+1\right)^2\)
\(\Leftrightarrow50\left(m+1\right)^2=m^2-15m+16\)
\(\Leftrightarrow50m^2+100m+50-m^2+15m-16=0\)
\(\Leftrightarrow49m^2+115m+34=0\)
\(\text{Δ}=115^2-4\cdot49\cdot34=6561\)
Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}m_1=\dfrac{-115-81}{2\cdot49}=-2\left(nhận\right)\\m_2=\dfrac{-115+81}{2\cdot49}=-\dfrac{17}{49}\left(nhận\right)\end{matrix}\right.\)
b: \(\text{Δ}=\left(2m+2\right)^2-4\left(m^2+3m+2\right)\)
\(=4m^2+8m+4-4m^2-12m-8\)
=-4m-4
Để phương trình có hai nghiệm phân biệt thì -4m-4>0
=>-4m>4
hay m<-1
Theo đề, ta có: \(\left(x_1+x_2\right)^2-2x_1x_2=12\)
\(\Leftrightarrow\left(2m+2\right)^2-2\left(m^2+3m+2\right)-12=0\)
\(\Leftrightarrow4m^2+8m+4-2m^2-6m-4-12=0\)
\(\Leftrightarrow2m^2+2m-12=0\)
\(\Leftrightarrow m^2+m-6=0\)
\(\Leftrightarrow\left(m+3\right)\left(m-2\right)=0\)
=>m=-3(nhận) hoặc m=2(loại)
PT có 2 nghiệm `<=> \Delta' >0 <=> 2^2-1.(m+1)>0<=> m<3`
Viet: `x_1+x_2=-4`
`x_1 x_2=m+1`
`(x_1)/(x_2)+(x_2)/(x_1)=10/3`
`<=> (x_1^2+x_2^2)/(x_1x_2)=10/3`
`<=> ((x_1+x_2)^2-2x_1x_2)/(x_1x_2)=10/3`
`<=> (4^2-2(m+1))/(m+1)=10/3`
`<=> m=2` (TM)
Vậy `m=2`.
Bài 2:
a: \(x^2-4x+3=0\)
=>x=1 hoặc x=3
\(x_1^2+x_2^2=1^2+3^2=10\)
b: \(\dfrac{1}{x_1+2}+\dfrac{1}{x_2+2}=\dfrac{1}{1}+\dfrac{1}{5}=\dfrac{6}{5}\)
c: \(x_1^3+x_2^3=1^3+3^3=28\)
d: \(x_1-x_2=1-3=-2\)