chứng tỏ đa thức f(x)=5x3-7x2+4x-2 có một trong các nghiệm = 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
`#3107.101107`
`A(x) = 3x - 9x^2 + 4x + 5x^3 + 7x^2 + 1`
`= (3x + 4x) - (9x^2 - 7x^2) + 5x^3 + 1`
`= 7x - 2x^2 + 5x^3 + 1`
`B(x) = 5x^3 - 3x^2 + 7x + 10`
`A(x) - B(x) = 7x - 2x^2 + 5x^3 + 1 - (5x^3 - 3x^2 + 7x + 10)`
`= 7x - 2x^2 + 5x^3 + 1 - 5x^3 + 3x^2 - 7x - 10`
`= (7x - 7x) + (3x^2 - 2x^2) + (5x^3 - 5x^3) - (10 - 1)`
`= x^2 - 9`
`=> C(x) = x^2 - 9`
`C(x) = 0`
`=> x^2 - 9 = 0`
`=> x^2 = 9 => x^2 = (+-3)^2 => x = +-3`
Vậy, nghiệm của đa thức `C(x)` là `x \in {3; -3}.`
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1
Gợi ý bạn làm : Bạn thay \(x=-4;x=-3;x=0;x=1\) vào \(f\left(x\right);g\left(x\right)\)
\(\Rightarrow\) Nếu kết quả ra giống nhau thì là nghiệm , ra khác nhau thì không là nghiệm
VD : Thay \(x=-4\) vào \(f\left(x\right)\) và \(g\left(x\right)\)
\(f\left(-4\right)=4.\left(-4\right)^4-5\left(-4\right)^3+3.\left(-4\right)+2=1334\)
\(g\left(x\right)=-4.\left(-4\right)^4+5\left(-4\right)^3+7=-1337\)
Ra hai kết quả khác nhau
\(\Rightarrow x=-4\) không là nghiệm
Bài 2
\(f\left(x\right)-g\left(x\right)=\left(-x^5+3x^2+4x+8\right)-\left(-x^5-3x^2+4x+2\right)\\ =-x^5+3x^2+4x+8+x^5+3x^2-4x-2\\ =\left(-x^5+x^5\right)+\left(3x^2+3x^2\right)+\left(4x-4x\right)+\left(8-2\right)\\ =6x^2+6\\ =x^2+1\\ =x^2+2.\dfrac{1}{2}x+\dfrac{1}{4}+\dfrac{3}{4}\\ =\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)
\(\Rightarrow\) phương trình vô nghiệm
![](https://rs.olm.vn/images/avt/0.png?1311)
\(a)\)\(5x^3-7x^2+4x-2=0\)
\(\Leftrightarrow\)\(\left(5x^3-5x^2\right)-\left(2x^2-4x+2\right)=0\)
\(\Leftrightarrow\)\(5x^2\left(x-1\right)-\left(\sqrt{2}x-\sqrt{2}\right)^2=0\)
\(\Leftrightarrow\)\(5x^2\left(x-1\right)-2\left(x-1\right)^2=0\)
\(\Leftrightarrow\)\(5x^2\left(x-1\right)-\left(2x-2\right)\left(x-1\right)=0\)
\(\Leftrightarrow\)\(\left(x-1\right)\left(5x^2-2x+2\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x-1=0\\5x^2-2x+2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\5x^2-2x+2=0\end{cases}}}\)
Vậy \(x=1\) là một trong các nghiệm của đa thức \(f\left(x\right)\)
Hok tốt nhé eiu :>
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Thu gọn:
P(x) = x4+(-7x2+4x2)+(x+6x)-2x3-2
P(x) = x4-3x2+7x-2x3-2
Sắp xếp: P(x) = x4-2x3-3x2+7x-2
Thu gọn:
Q(x) = x4+(-3x+x)+(-5x3+6x3)+1
Q(x) = x4-2x+x3+1
Sắp xếp: Q(x)= x4+ x3-2x+1
b/ Nếu x=2, ta có:
P(2) = 24-2.23-3.22+7.2-2
= 16 - 2.8 - 3.4 + 14 -2
= 16-16-12+14-2
= -12+14-2
= 0
=> x=0 là nghiệm của P(x)
Q(2)= 24+ 23-2.2+1
= 16+8-4+1
= 24-4+1
=21
mà 21≠0
Vậy: x=2 không phải là nghiệm của Q(x)
=>
![](https://rs.olm.vn/images/avt/0.png?1311)
Thay \(x=-1\) vào đa thức ta được:
\(P\left(-1\right)=3.\left(-1\right)^3+4.\left(-1\right)^2+2.\left(-1\right)+1=-3+4-2+1=0\)
\(\Rightarrow x=-1\) là một trong các nghiệm của đa thức
P(-1)=3*(-1)^3+4*(-1)^2+2*(-1)+1
=-3-2+1+4
=0
=>x=-1 là nghiệm của P(x)
![](https://rs.olm.vn/images/avt/0.png?1311)
a. cậu thu gọn bằng cách dùng t/c kết hợp và giao hoán
b. cậu thay từng giá vào biểu thức vừa được rút gọn để tìm
c. thì.... tớ ko biết
![](https://rs.olm.vn/images/avt/0.png?1311)
TA CÓ
\(p\left(\frac{1}{2}\right)=4\cdot\left(\frac{1}{2}\right)^2-4\cdot\frac{1}{2}+1=4\cdot\frac{1}{4}-2+1\)
\(=1-2+1=0\)
vậy ......
TA CÓ
\(x^2\ge0\Rightarrow4x^2\ge0\Rightarrow4x^2+1\ge1\)hay\(4x^2+1>0\)
vậy..............
Thay \(x=\frac{1}{2}\)vào P (x) ta có:
\(P\left(\frac{1}{2}\right)=4.\left(\frac{1}{2}\right)^2-4.\frac{1}{2}+1\)
\(P\left(\frac{1}{2}\right)=4.\frac{1}{4}-2+1\)
\(P\left(\frac{1}{2}\right)=1-2+1\)
\(P\left(\frac{1}{2}\right)=0\)
Vậy \(x=\frac{1}{2}\) là nghiệm của P(x)
![](https://rs.olm.vn/images/avt/0.png?1311)
Lời giải:
Bạn hiểu rằng đa thức $f(x)$ có nghiệm $x=a$ khi mà $f(a)=0$
a) Theo đề bài:
\(f(x)=3x^3+4x^2+2x+1\)
\(\Rightarrow f(-1)=3(-1)^3+4(-1)^2+2(-1)+1=0\)
Do đó $x=-1$ là một nghiệm của $f(x)$ (đpcm)
b)
\(f(x)=ax^3+bx^2+cx+d\) nhận $x=-1$ là nghiệm khi và chỉ khi :
\(f(-1)=a(-1)^3+b(-1)^2+c(-1)+d=0\)
\(\Leftrightarrow -a+b-c+d=0\)
\(\Leftrightarrow a+c=b+d\) (đpcm)
![](https://rs.olm.vn/images/avt/0.png?1311)
*Chứng tỏ \(x=\frac{1}{2}\) là nghiệm của đa thức \(P\left(x\right)=4x^2-4x+1\)
Cho \(P\left(x\right)=0\)
\(\Rightarrow4x^2-4x+1=0\)
\(\Rightarrow4x^2-2x-2x+1=0\)
\(\Rightarrow2x\left(2x-1\right)-\left(2x-1\right)=0\)
\(\Rightarrow\left(2x-1\right)\left(2x-1\right)=0\)
\(\Rightarrow\left(2x-1\right)^2=0\)
\(\Rightarrow2x-1=0\)
\(\Rightarrow x=\frac{1}{2}\)
\(\Rightarrow P\left(x\right)\) có nghiệm là \(x=\frac{1}{2}\)
\(\Rightarrowđpcm\)
*Chứng tỏ đa thức \(Q\left(x\right)=4x^2+1\) không có nghiệm
Ta có: \(4x^2\ge0\forall x\)
\(\Rightarrow4x^2+1>0\)
hay \(Q\left(x\right)>0\)
\(\Rightarrow\)Đa thức \(Q\left(x\right)=4x^2+1\) không có nghiệm (đpcm)
Ta có: f(x) = 5x3-7x2+4x-2
\(\Rightarrow\) f(1) = \(5.1^3-7.1^2+4.1-2\)
= 5 - 7 + 4 - 2 = 0
\(\Rightarrow\) f(x) có nghiệm = 1