Giá trị lớn nhất của biểu thức \(B=xyz\left(x+y\right)\left(y+z\right)\left(z+x\right)\) với \(x;y;z\ge0;x+y+z=1\) là \(k\) Khi đó \(9^3.k=\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{xyz}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\le\dfrac{xyz}{2\sqrt{xy}.2\sqrt{yz}.2\sqrt{zx}}=\dfrac{1}{8}\)
Dấu "=" xảy ra khi \(x=y=z\)
a) Đặt \(\hept{\begin{cases}x+y-z=a\\y+z-x=b\\z+x-y=c\end{cases}\Rightarrow}x=\frac{a+c}{2};y=\frac{b+a}{2};z=\frac{c+b}{2}\)
Suy ra bất đẳng thức cần chứng minh tương đương với: \(\frac{a+b}{2}.\frac{b+c}{2}.\frac{c+a}{2}\ge abc\Leftrightarrow\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{8}\ge abc\)\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\)
Áp dụng bất đẳng thức AM-GM: \(\hept{\begin{cases}a+b\ge2\sqrt{ab}\ge0\\b+c\ge2\sqrt{bc}\ge0\\c+a\ge2\sqrt{ca}\ge0\end{cases}\Rightarrow}\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8\sqrt{\left(abc\right)^2}=8abc\)
Vật bất đẳng thức được chứng minh
Dấu "=" xảy ra khi \(a=b=c\Leftrightarrow x=y=z\)
Ta có: \(\frac{1}{\left(3x+1\right)\left(y+z\right)+x}=\frac{1}{3x\left(y+z\right)+x+y+z}\le\frac{1}{3x\left(y+z\right)+3\sqrt[3]{xyz}}\)
\(=\frac{1}{3x\left(y+z\right)+3\sqrt[3]{1}}=\frac{1}{3x\left(y+z\right)+3}=\frac{1}{3\left(xy+zx+1\right)}=\frac{1}{3}\cdot\frac{1}{\frac{1}{y}+\frac{1}{z}+1}\)
Tương tự ta chứng minh được:
\(\frac{1}{\left(3y+1\right)\left(z+x\right)+y}\le\frac{1}{3}\cdot\frac{1}{\frac{1}{z}+\frac{1}{x}+1}\) ; \(\frac{1}{\left(3z+1\right)\left(x+y\right)+z}\le\frac{1}{3}\cdot\frac{1}{\frac{1}{x}+\frac{1}{y}+1}\)
Cộng vế 3 BĐT trên lại:
\(A\le\frac{1}{3}\cdot\left(\frac{1}{\frac{1}{x}+\frac{1}{y}+1}+\frac{1}{\frac{1}{y}+\frac{1}{z}+1}+\frac{1}{\frac{1}{z}+\frac{1}{x}+1}\right)\)
\(\Leftrightarrow3A\le\frac{1}{\left(\frac{1}{\sqrt[3]{x}}\right)^3+\left(\frac{1}{\sqrt[3]{y}}\right)^3+1}+\frac{1}{\left(\frac{1}{\sqrt[3]{y}}\right)^3+\left(\frac{1}{\sqrt[3]{z}}\right)^3+1}+\frac{1}{\left(\frac{1}{\sqrt[3]{z}}\right)^3+\left(\frac{1}{\sqrt[3]{x}}\right)^3+1}\)
Đặt \(\left(\frac{1}{\sqrt[3]{x}};\frac{1}{\sqrt[3]{y}};\frac{1}{\sqrt[3]{z}}\right)=\left(a;b;c\right)\) khi đó:
\(3A\le\frac{1}{a^3+b^3+1}+\frac{1}{b^3+c^3+1}+\frac{1}{c^3+a^3+1}\)
\(=\frac{1}{\left(a+b\right)\left(a^2-ab+b^2\right)+1}+\frac{1}{\left(b+c\right)\left(b^2-bc+c^2\right)+1}+\frac{1}{\left(c+a\right)\left(c^2-ca+a^2\right)+1}\)
\(\le\frac{1}{\left(a+b\right)\left(2ab-ab\right)+1}+\frac{1}{\left(b+c\right)\left(2bc-bc\right)+1}+\frac{1}{\left(c+a\right)\left(2ca-ca\right)+1}\)
\(=\frac{1}{ab\left(a+b\right)+1}+\frac{1}{bc\left(b+c\right)+1}+\frac{1}{ca\left(c+a\right)+1}\)
\(=\frac{abc}{ab\left(a+b\right)+abc}+\frac{abc}{bc\left(b+c\right)+abc}+\frac{abc}{ca\left(c+a\right)+abc}\)
\(=\frac{c}{a+b+c}+\frac{a}{b+c+a}+\frac{b}{c+a+b}\)
\(=\frac{a+b+c}{a+b+c}=1\)
Dấu "=" xảy ra khi: \(a=b=c\Leftrightarrow x=y=z=1\)
Vậy Max(A) = 1 khi x = y = z = 1
Câu hỏi của Pham Van Hung - Toán lớp 9 - Học toán với OnlineMath
Ta chứng minh được các bất đẳng thức bằng biến đổi tương đương và bất đẳng thức Cô-si:
\(x+y+z\le\sqrt{3\left(x^2+y^2+z^2\right)}\)
\(xy+yz+zx\ge3\sqrt[3]{\left(xyz\right)^2}\)
\(\Rightarrow\frac{xyz}{xy+yz+zx}\le\frac{\sqrt[3]{xyz}}{3}\)
Mà \(\sqrt[3]{xyz}\le\frac{x+y+z}{3}\le\frac{\sqrt{3\left(x^2+y^2+z^2\right)}}{3}\)
Vậy \(A\le\frac{\sqrt{3\left(x^2+y^2+z^2\right)}}{3}.\frac{\sqrt{3\left(x^2+y^2+z^2\right)}+\sqrt{x^2+y^2+z^2}}{x^2+y^2+z^2}\)
\(A\le\frac{\sqrt{3}\left(\sqrt{3}+1\right)}{3}=\frac{3+\sqrt{3}}{3}\)
áp dụng bất đẳng thức Cauchy cho 2 số không âm ta có
\(x+y\ge2\sqrt{xy};y+z\ge2\sqrt{yz};z+x\ge2\sqrt{zx},\)với mọi x,y,z dương\(\Rightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge2\sqrt{xy}.2\sqrt{yz}.2\sqrt{zx}\)với x,y,z dương
\(\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge8xyz\)
\(\Leftrightarrow\frac{xyz}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\le\frac{1}{8}\)
Hay giá trị lớn nhất của M =8 khi x=y=z
Ta có \(x+y+z+\sqrt{xyz}=4\Rightarrow4x+4y+4z+4\sqrt{xyz}=16\)
Ta lại có \(\sqrt{x\left(4-y\right)\left(4-z\right)}=\sqrt{x\left(16-4y-4z+yz\right)}=\sqrt{x\left(4x+4\sqrt{xyz}+yz\right)}=\sqrt{4x^2+4x\sqrt{xyz}+xyz}=\sqrt{\left(2x+\sqrt{xyz}\right)^2}=2x+\sqrt{xyz}\)
Tương tự \(\sqrt{y\left(4-z\right)\left(4-x\right)}=2y+\sqrt{xyz}\)
\(\sqrt{z\left(4-x\right)\left(4-y\right)}=2z+\sqrt{xyz}\)
Suy ra \(P=\sqrt{x\left(4-y\right)\left(4-z\right)}+\sqrt{y\left(4-z\right)\left(4-x\right)}+\sqrt{z\left(4-x\right)\left(4-y\right)}-\sqrt{xyz}=2x+\sqrt{xyz}+2y+\sqrt{xyz}+2z+\sqrt{xyz}-\sqrt{xyz}=2x+2y+2z+2\sqrt{xyz}=2\left(x+y+z+\sqrt{xyz}\right)=2.4=8\)
Bài này = 8 ak
\(\sqrt[3]{xyz}\le\frac{x+y+z}{3}=\frac{1}{3}\)
\(\Leftrightarrow xyz\le\frac{1}{27}\left(1\right)\)
\(\sqrt[3]{\left(x+y\right)\left(y+z\right)\left(x+z\right)}\le\frac{2\left(x+y+z\right)}{3}=\frac{2}{3}\)
\(\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)\le\frac{8}{27}\left(2\right)\)
Từ (1);(2) =>k=\(\frac{8}{729}\Rightarrow9^3\cdot k=8\)
Dấu = xảy ra khi x=y=z=1/3
Cho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nhaCho mình xin lỗi nha