K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 11 2023

a: AE+EC=AC

=>\(EC+\dfrac{2}{5}AC=AC\)

=>\(EC=\dfrac{3}{5}AC\)
\(\dfrac{AE}{EC}=\dfrac{\dfrac{2}{5}AC}{\dfrac{3}{5}AC}=\dfrac{2}{5}:\dfrac{3}{5}=\dfrac{2}{3}\)

Xét ΔACB có IE//AB

nên \(\dfrac{IC}{IB}=\dfrac{EC}{EA}=\dfrac{3}{2}\)

b: Xét ΔACB có IE//AB

nên \(\dfrac{IE}{AB}=\dfrac{CI}{CB}=\dfrac{3}{5}\)

AD+DB=AB

=>\(DB+\dfrac{2}{3}AB=AB\)

=>\(DB=\dfrac{1}{3}AB\)

=>AB=3BD

\(\dfrac{IE}{AB}=\dfrac{3}{5}\)

=>\(\dfrac{IE}{3BD}=\dfrac{3}{5}\)

=>\(\dfrac{IE}{BD}=\dfrac{9}{5}\)

Xét ΔFEI có DB//EI

nên \(\dfrac{FD}{FE}=\dfrac{DB}{EI}=\dfrac{5}{9}\)

=>\(FD=\dfrac{5}{9}FE\)

FD+DE=FE

=>\(DE+\dfrac{5}{9}FE=FE\)

=>\(DE=\dfrac{4}{9}FE\)

\(\dfrac{DF}{DE}=\dfrac{\dfrac{5}{9}EF}{\dfrac{4}{9}EF}=\dfrac{5}{9}:\dfrac{4}{9}=\dfrac{5}{4}\)

c: CI/IB=3/2

=>CI=3/2BI

BI+CI=BC

=>\(BC=\dfrac{3}{2}BI+BI=\dfrac{5}{2}BI\)

Xét ΔFEI có DB//EI

nên \(\dfrac{FB}{BI}=\dfrac{FD}{DE}=\dfrac{5}{4}\)

=>\(FB=\dfrac{5}{4}BI\)

mà \(BC=\dfrac{5}{2}BI\)

nên \(\dfrac{FB}{BC}=\dfrac{\dfrac{5}{4}BI}{\dfrac{5}{2}BI}=\dfrac{5}{4}:\dfrac{5}{2}=\dfrac{1}{2}\)

=>\(\dfrac{FB}{FC}=\dfrac{1}{2+1}=\dfrac{1}{3}\)

2 tháng 3 2017

5/7

NV
13 tháng 9 2021

Đặt \(\overrightarrow{BF}=x.\overrightarrow{BC}\)

D là trung điểm AC \(\Rightarrow\overrightarrow{BD}=\dfrac{1}{2}\overrightarrow{BA}+\dfrac{1}{2}\overrightarrow{BC}=-\dfrac{1}{2}\overrightarrow{AB}+\dfrac{1}{2}\overrightarrow{BC}\)

DE=3BE \(\Rightarrow\overrightarrow{BE}=\dfrac{1}{4}\overrightarrow{BD}=-\dfrac{1}{8}\overrightarrow{AB}+\dfrac{1}{8}\overrightarrow{BC}\)

Ta có:

\(\overrightarrow{AE}=\overrightarrow{AB}+\overrightarrow{BE}=\overrightarrow{AB}-\dfrac{1}{8}\overrightarrow{AB}+\dfrac{1}{8}\overrightarrow{BC}=\dfrac{7}{8}\overrightarrow{AB}+\dfrac{1}{8}\overrightarrow{BC}=\dfrac{7}{8}\left(\overrightarrow{AB}+\dfrac{1}{7}\overrightarrow{BC}\right)\)

\(\overrightarrow{AF}=\overrightarrow{AB}+\overrightarrow{BF}=\overrightarrow{AB}+x.\overrightarrow{BC}\)

Mà A, E, F thẳng hàng

\(\Rightarrow x=\dfrac{1}{7}\Rightarrow BF=\dfrac{1}{7}BC\Rightarrow\dfrac{BF}{FC}=\dfrac{1}{6}\)

NV
13 tháng 9 2021

undefined

25 tháng 10 2019

làm ơn giải giúp mình với

9 tháng 8 2015

A B C F D E H K O

+) Ta có: Góc DAC = DAB + BAC = 90+ BAC

Góc BAE = CAE + BAC = 90+ BAC

=> góc DAC = BAE

Xét tam giác DAC và BAE có: DA = BA ; góc DAC = BAE; AC = AE 

=> tam giác DAC = BAE (c-g-c) => DC= BE và góc AEB = ACD 

Gọi O là giao của CD và BE; H là giao của AC và BE

+) Xét Tam giác AEH vuông  có: Góc AEH + AHE = 90o

Mà góc AEH = ACD ; AHE = OHC ( đối đỉnh)

=> góc ACD + OHC = 90o 

Xét tam giác HOC có góc HOC = 180- ( ACD + OHC) = 90o => BOC = 90( kề bù)

- Gọi K là giao của CD và BF 

ta có: góc KFC = KOB ( cùng = 90o); góc OKB = FKC (đối đỉnh)

=> góc OBF = FCK  hay EBF = FCD 

+) Xét tam giác FCD và FBE có: FC = FB (gt); góc FCD = FBE ; CD = BE ( chứng minh trên)

=> tam giác FCD = FBE (c- g- c)

=> FD = FE  => tam giác FDE cân tại F   (*)

Lại có: góc DFC = BFE  mà góc DFC = DFB + BFC  ; góc BFE = BFD +DFE 

=> góc BFC = DFE ; góc BFC = 90( giả thiết) => góc DFE = 90=> tam giác DFE vuông tại F   (**)

Từ (*)(**) => tam giác DFE vuông cân tại F

19 tháng 8 2023

Để chứng minh F là trọng tâm của tam giác AMN, ta cần chứng minh ba đường phân giác AM, AN và FM đồng quy tại một điểm. Thực hiện theo các bước sau:

Bước 1: Chứng minh AM cắt FN tại điểm P.

Vì CM là đường phân giác của tam giác ABC nên từ hai tỉ lệ bằng nhau CD/DB = CE/EA ta có: AD
/ DB = AE/EC
Do đó, tam giác ADE và CDB đồng dạng theo tỷ lệ AD/DB = AE/EC.

Từ đó suy ra:
AM/MB = (AD + DM)/DB = (AE + EM)/(EC + CB) = AE/EC = AC/CE = AC/(AC/6) = 6 Tương tự,

ta có:
AN/NC = AD/DB = 2
FM/MB = FB + BM/MB = FB/(BC/3) + FM/(FM-MB) = 3

Vậy tam giác AMN đồng dạng với tam giác ABC theo tỷ lệ 6:2:3.

Bước 2: Chứng minh FM cắt AN tại một điểm Q.

Vì FM = 2FB nên từ tam giác FBM ta có FB = FM/2 = FM/2FB, do đó tam giác FNB đồng dạng với tam giác ABC theo tỷ lệ 1:2.

Vậy AM, FN và EQ đồng qui tại một điểm P.

Bước 3: Chứng minh đường phân giác FM cắt AN tại điểm P.

CM = FM và CN = FN, từ đó tam giác CMN và FMN đồng dạng theo tỉ lệ 1: 1.