căn bậc 2 của 27+48-108-12
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=3\sqrt{3}+4\sqrt{3}-6\sqrt{3}-2\sqrt{3}=-\sqrt{3}\)
\(2\sqrt{12}-3\sqrt{48}+2\sqrt{75}\)
\(=2\sqrt{2^2\cdot3}-3\sqrt{2^4\cdot3}+2\sqrt{5^2\cdot3}\)
\(=2\cdot2\sqrt{3}-3\cdot2^2\sqrt{3}+2\cdot5\sqrt{3}\)
\(=4\sqrt{3}-3\cdot4\sqrt{3}+10\sqrt{3}\)
\(=4\sqrt{3}-12\sqrt{3}+10\sqrt{3}\)
\(=\left(4-12+10\right)\sqrt{3}\)
\(=2\sqrt{3}\)
\(\sqrt{27}-3\sqrt{48}+2\sqrt{108}-\sqrt{2-\sqrt{3}}^2=3\sqrt{3}-12\sqrt{3}+12\sqrt{3}-2+\sqrt{3}=3\sqrt{3}-2+\sqrt{3}=4\sqrt{3}-2=2\left(2\sqrt{3}-1\right)\)
Ta có: \(\sqrt{27}-3\sqrt{48}+2\sqrt{108}-\sqrt{\left(2-\sqrt{3}\right)^2}\)
\(=3\sqrt{3}-12\sqrt{3}+12\sqrt{3}-2+\sqrt{3}\)
\(=2\sqrt{3}-2\)
Ý bạn là thế này : \(\sqrt{27+12\sqrt{2}}\)Không rút gọn được bạn nhé ^^
Gợi ý cho bạn : \(\sqrt{17+12\sqrt{2}}=\sqrt{\left(2\sqrt{2}+3\right)^2}=2\sqrt{2}+3\)
Mk ko hiểu bn ghi đề bài gì cả sao lại căn bậc hai của 27+ 12 căn bậc hai của 2 hai căn gần nhau à
a) \(15\sqrt{\dfrac{4}{3}}-5\sqrt{48}+2\sqrt{12}-6\sqrt{\dfrac{1}{3}}\)
\(=\sqrt{15^2\cdot\dfrac{4}{3}}-5\cdot4\sqrt{3}+2\cdot2\sqrt{3}-\sqrt{6^2\cdot\dfrac{1}{3}}\)
\(=\sqrt{\dfrac{225\cdot4}{3}}-20\sqrt{3}+4\sqrt{3}-\sqrt{\dfrac{36}{3}}\)
\(=\sqrt{75\cdot4}-16\sqrt{3}-\sqrt{12}\)
\(=10\sqrt{3}-16\sqrt{3}-2\sqrt{3}\)
\(=-8\sqrt{3}\)
b) \(\dfrac{15}{\sqrt{6}+1}-\dfrac{3}{\sqrt{7}-\sqrt{2}}-15\sqrt{6}+3\sqrt{7}\)
\(=\dfrac{15\left(\sqrt{6}-1\right)}{\left(\sqrt{6}+1\right)\left(\sqrt{6}-1\right)}-\dfrac{3\left(\sqrt{7}+\sqrt{2}\right)}{\left(\sqrt{7}-\sqrt{2}\right)\left(\sqrt{7}+\sqrt{2}\right)}-15\sqrt{6}+3\sqrt{7}\)
\(=\dfrac{15\left(\sqrt{6}-1\right)}{6-1}-\dfrac{3\sqrt{7}+3\sqrt{2}}{7-2}-15\sqrt{6}+3\sqrt{7}\)
\(=3\left(\sqrt{6}-1\right)-\dfrac{3\sqrt{7}+3\sqrt{2}}{5}-15\sqrt{6}+3\sqrt{7}\)
\(=3\sqrt{6}-3-\dfrac{3\sqrt{7}+3\sqrt{2}}{5}-15\sqrt{6}+3\sqrt{7}\)
\(=-12\sqrt{6}-3+3\sqrt{7}-\dfrac{3\sqrt{7}+3\sqrt{2}}{5}\)
\(=\dfrac{-60\sqrt{6}-15+15\sqrt{7}-3\sqrt{7}-3\sqrt{2}}{5}\)
\(=\dfrac{-60\sqrt{6}-15+12\sqrt{7}-3\sqrt{2}}{5}\)
\(\sqrt{12}+\sqrt{27}-\sqrt{3}=\sqrt{3}.\left(2+3-1\right)=4\sqrt{3}\)
\(\sqrt{3}\cdot\sqrt{27}\)
\(=\sqrt{3}\cdot\sqrt{3^3}\)
\(=\sqrt{3\cdot3^3}\)
\(=\sqrt{3^4}\)
\(=\sqrt{9^2}\)
\(=9\)
Với \(a,b>0;a\ne b\)ta có:
\(\left(\sqrt{a}-\sqrt{b}\right)^2>0\Leftrightarrow a-2\sqrt{ab}+b>0\Leftrightarrow2\left(a+b\right)>\left(\sqrt{a}+\sqrt{b}\right)^2\)
\(\Leftrightarrow\sqrt{a}+\sqrt{b}< \sqrt{2\left(a+b\right)}\)
Áp dụng ta được:
\(\sqrt{2}+\sqrt{6}+\sqrt{12}+\sqrt{20}< \sqrt{2\left(2+6\right)}+\sqrt{2\left(12+20\right)}\)
\(=\sqrt{16}+\sqrt{64}=4+8=12\)
Ta có đpcm.
\(=3\sqrt{3}+4\sqrt{3}-6\sqrt{3}-2\sqrt{3}=-\sqrt{3}\)