K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Có : \(S=1+2+2^2+2^3+....+2^{99}\)

\(\Rightarrow2S=2+2^2+2^3+....+2^{100}\)

\(\Rightarrow2S-S=\left(2+2^2+2^3+...+2^{100}\right)-\left(1+2+2^2+....+2^{99}\right)\)

\(\Rightarrow S=2^{100}-1< 2^{100}\)

Vậy \(S< 2^{100}\)

 S=1+2+22+23+....+299

⇒2S=2+22+23+....+2100

⇒2S−S=2100-1

S=2100-1

vì 2100 -1<2100

⇒S<2100

 

11 tháng 9 2021

\(A=2+2^2+2^3+2^4+...+2^{99}+2^{100}\)

\(\Rightarrow2A=2^2+2^3+2^4+...+2^{100}+2^{101}\)

\(\Rightarrow A=2A-A=2^2+2^3+2^4+...+2^{100}+2^{101}-2-2^2-2^3-2^4-...-2^{99}-2^{100}=2^{101}-2\)

12 tháng 9 2021

\(B=2+2^2+2^3+2^4+...+2^{99}+2^{100}=2\left(1+2^2+2^3+2^4\right)+...+2^{96}\left(1+2^2+2^3+2^4\right)=2.31+2^6.31+...+2^{96}.31=31\left(2+2^6+...+2^{96}\right)⋮31\)

Cảm ơn bạn/chị nhé ạ!!!Thankyou very much!!!

 

26 tháng 8 2021

\(A=1+2+2^2+2^3+2^4+...+2^{99}+2^{100}\)

\(\Rightarrow2A=2+2^2+2^3+2^4+2^5+...+2^{100}+2^{101}\)

\(\Rightarrow2A-A=2^{101}-1\)

\(\Leftrightarrow A=2^{101}-1\)

26 tháng 8 2021

Đặt biểu thức là A

ta có 2A-A=2^101-1

27 tháng 8 2017

20 tháng 2 2019

a, Ta có :

 A =  1 + 2 + 2 2 + 2 3 + 2 4 + . . . + 2 99 + 2 100

2A =  2 + 2 2 + 2 3 + 2 4 + . . . + 2 99 + 2 100 + 2 101

A = 2A – A =  ( 2 + 2 2 + 2 3 + 2 4 + . . . + 2 99 + 2 100 + 2 101 ) –( 1 + 2 + 2 2 + 2 3 + 2 4 + . . . + 2 99 + 2 100 )

=  2 + 2 2 + 2 3 + 2 4 + . . . + 2 99 + 2 100 + 2 101 1 - 2 - 2 2 - 2 3 - 2 4 - . . . - 2 99 - 2 100

=  2 101 - 1

Vậy A =  2 101 - 1

b, Ta có.

B = 5 + 5 3 + 5 5 + . . . + 5 97 + 5 99

5 2 B =  5 2 ( 5 + 5 3 + 5 5 + . . . + 5 97 + 5 99 )

25B =  5 3 + 5 5 + . . . + 5 97 + 5 99 + 5 101

25B – B = ( 5 3 + 5 5 + . . . + 5 97 + 5 99 + 5 101 ) –  ( 5 + 5 3 + 5 5 + . . . + 5 97 + 5 99 )

24B =  5 3 + 5 5 + . . . + 5 97 + 5 99 + 5 101 5 - 5 3 - 5 5 - . . . - 5 97 - 5 99

24B =  5 101 - 5

B =  5 101 - 5 24 = 5 5 100 - 1 24

Vậy B =  5 5 100 - 1 24

AH
Akai Haruma
Giáo viên
13 tháng 12 2021

Lời giải:
$A=(2+2^2)+(2^3+2^4)+....+(2^{99}+2^{100})$
$=2(1+2)+2^3(1+2)+...+2^{99}(1+2)$

$=2.3+2^3.3+...+2^{99}.3$

$=3(2+2^3+...+2^{99})\vdots 3$

Ta có đpcm.