Tổng bình phương các nghiệm:
\(x\sqrt{3-2x}=3x^2-6x+4\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x\sqrt{3-2x}=3x^2-6x+4\left(ĐK:x\le\frac{3}{2}\right)\)
\(\Leftrightarrow2x\sqrt{3-2x}=6x^2-12x+8\)
\(\Leftrightarrow\left(x^2-2x\sqrt{3-2x}+3-2x\right)+\left(5x^2-10x+5\right)=0\)
\(\Leftrightarrow\left(x-\sqrt{3-2x}\right)^2+5\left(x-1\right)^2=0\)
\(\Leftrightarrow\left\{\begin{matrix}x-\sqrt{3-2x}=0\\x-1=0\end{matrix}\right.\Rightarrow x=1\left(tm\right)\)
a) Bình phương hai vế ta được
\(2{x^2} - 3x - 1 = 2x - 3\)
\(\begin{array}{l} \Leftrightarrow 2{x^2} - 5x +2 = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = 2\\x = \frac{1}{2}\end{array} \right.\end{array}\)
Thay các giá trị tìm được vào bất phương trình \(2x - 3 \ge 0\) thì chỉ \(x=2\) thỏa mãn.
Vậy tập nghiệm của phương trình là \(S = \left\{2 \right\}\)
b) Bình phương hai vế ta được
\(\begin{array}{l}4{x^2} - 6x - 6 = {x^2} - 6\\ \Leftrightarrow 3{x^2} - 6x = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 2\end{array} \right.\end{array}\)
Thay các giá trị tìm được vào bất phương trình \({x^2} - 6 \ge 0\) thì thấy chỉ có nghiệm \(x = 2\)thỏa mãn.
Vậy tập nghiệm của phương trình là \(S = \left\{ 2 \right\}\)
c) \(\sqrt {x + 9} = 2x - 3\)(*)
Ta có: \(2x - 3 \ge 0 \Leftrightarrow x \ge \frac{3}{2}\)
Bình phương hai vế của (*) ta được:
\(\begin{array}{l}x + 9 = {\left( {2x - 3} \right)^2}\\ \Leftrightarrow 4{x^2} - 12x + 9 = x + 9\\ \Leftrightarrow 4{x^2} - 13x = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = 0\left( {KTM} \right)\\x = \frac{{13}}{4}\left( {TM} \right)\end{array} \right.\end{array}\)
Vậy tập nghiệm của phương trình là \(S = \left\{ {\frac{{13}}{4}} \right\}\)
d) \(\sqrt { - {x^2} + 4x - 2} = 2 - x\)(**)
Ta có: \(2 - x \ge 0 \Leftrightarrow x \le 2\)
Bình phương hai vế của (**) ta được:
\(\begin{array}{l} - {x^2} + 4x - 2 = {\left( {2 - x} \right)^2}\\ \Leftrightarrow - {x^2} + 4x - 2 = {x^2} - 4x + 4\\ \Leftrightarrow 2{x^2} - 8x + 6 = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = 1\left( {TM} \right)\\x = 3\left( {KTM} \right)\end{array} \right.\end{array}\)
Vậy tập nghiệm của phương trình là \(S = \left\{ 1 \right\}\)
a) \(\sqrt{1-6x+9x^2}=9\)
\(\Leftrightarrow\sqrt{\left(1-3x\right)^2}=9\)
\(\Leftrightarrow\left|1-3x\right|=9\)
\(\Leftrightarrow\left[{}\begin{matrix}1-3x=9\\1-3x=-9\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}3x=1-9\\3x=1+9\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}3x=-8\\3x=10\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{8}{3}\\x=\dfrac{10}{3}\end{matrix}\right.\)
b) \(\sqrt{2x-3}-\sqrt{x+1}=0\) (\(x\ge\dfrac{3}{2}\))
\(\Leftrightarrow\sqrt{2x-3}=\sqrt{x+1}\)
\(\Leftrightarrow2x-3=x+1\)
\(\Leftrightarrow2x-x=1+3\)
\(\Leftrightarrow x=4\left(tm\right)\)
c) \(\sqrt{9x^2+12+4}-2=3x\)
\(\Leftrightarrow\sqrt{\left(3x+2\right)^2}=3x+2\)
\(\Leftrightarrow\left|3x+2\right|=3x+2\)
\(\Leftrightarrow3x+2\ge0\)
\(\Leftrightarrow3x\ge-2\)
\(\Leftrightarrow x\ge-\dfrac{2}{3}\)
a: =>|3x-1|=9
=>3x-1=9 hoặc 3x-1=-9
=>x=-8/3 hoặc x=10/3
b: =>căn 2x-3=căn x+1
=>2x-3=x+1
=>x=4
c: =>|3x+2|=3x+2
=>3x+2>=0
=>x>=-2/3
Đặt \(\sqrt[3]{2x-1}=t\Rightarrow2x=t^3+1\)
Ta được hệ: \(\left\{{}\begin{matrix}x^3+1=2t\\t^3+1=2x\end{matrix}\right.\)
\(\Rightarrow x^3-t^3=2t-2x\)
\(\Leftrightarrow\left(x-t\right)\left(x^2+xt+t^2\right)+2\left(x-t\right)=0\)
\(\Leftrightarrow\left(x-t\right)\left(x^2+xt+t^2+2\right)=0\)
\(\Leftrightarrow x=t\) (do \(x^2+xt+t^2+2=\left(x+\dfrac{t}{2}\right)^2+\dfrac{3t^2}{4}+2>0\))
\(\Leftrightarrow x=\sqrt[3]{2x-1}\Leftrightarrow x^3=2x-1\)
\(\Leftrightarrow x^3-2x+1=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2+x-1\right)=0\)
Tới đây bấm máy hoặc dùng Viet
pt<=> \(2x\sqrt{3-2x}=6x^2-12x+8\)
<=>\(6x^2-12x+8-2x\sqrt{3-2x}=0\)
<=> \(x^2-2x\sqrt{3-2x}+3-2x+5x^2-10x+5=0\)
<=> \(\left(x-\sqrt{3-2x}\right)^2+5\left(x-1\right)^2=0\)
đến đây cậu tự giải nha
okie okie ^^ camon cậu Tuấn Anh ^^