Tìm x , y,thuộc z thoả mãn : 3x (y+1)=y+5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Giả sử: \(9x+5=n\left(n+1\right)\left(n\in Z\right)\)
\(36x+20-4n^2+4n\)
\(\Rightarrow36x+21=4n^2+4n+1\)
\(\Rightarrow3\left(12x+7\right)=\left(2n+1\right)^2\)
\(\left(2n+1\right)^2\)là số chính phương nên sẽ chia hết cho 3 => (2n+1)2 chia hết cho 9
Lại có: 12x+7 ko chia hết cho 3 => 3(12x+7) ko chia hết cho 9
Chứng tỏ không tồn tại số nguyên x nào để 9x+5=n(n+1)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x-1}{2}=\dfrac{y+1}{3}=\dfrac{z}{5}=\dfrac{x-1+2y+2-2z}{2+6-10}=\dfrac{-3}{-2}=\dfrac{3}{2}\)
Do đó: \(\left\{{}\begin{matrix}x-1=3\\y+1=\dfrac{9}{2}\\z=5\cdot\dfrac{3}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=\dfrac{7}{2}\\z=\dfrac{15}{2}\end{matrix}\right.\)
\(3x+y+6z\le x^2\left(y+z\right)+5xz\left(y+z\right)=\dfrac{1}{2}.2x\left(y+z\right)\left(x+5z\right)\)
\(\Rightarrow3x+y+6z\le\dfrac{1}{54}\left(2x+y+z+x+5z\right)^3=\dfrac{1}{54}\left(3x+y+6z\right)^3\)
\(\Rightarrow\left(3x+y+6z\right)^2\ge54\)
\(\Rightarrow3x+y+6z\ge3\sqrt{6}\)
Dấu "=" xảy ra khi \(\left(x;y;z\right)=\left(\dfrac{\sqrt{6}}{2};\dfrac{9\sqrt{6}}{10};\dfrac{\sqrt{6}}{10}\right)\)
\(\Leftrightarrow3x^2+2y^2+2z^2+2yz=2\)
\(\Rightarrow2\ge3x^2+2y^2+2z^2+y^2+z^2\)
\(\Leftrightarrow2\ge3\left(x^2+y^2+z^2\right)\)
Có: \(\left(x+y+z\right)^2\le3\left(x^2+y^2+z^2\right)\le2\)
\(\Rightarrow\)\(A^2\le2\) \(\Leftrightarrow A\in\left[-\sqrt{2};\sqrt{2}\right]\)
minA=-1\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x+y+z=-\sqrt{2}\\x=y=z\end{matrix}\right.\) \(\Rightarrow x=y=z=-\dfrac{\sqrt{2}}{3}\)
maxA=1\(\Leftrightarrow\left\{{}\begin{matrix}x+y+z=\sqrt{2}\\x=y=z\end{matrix}\right.\) \(\Rightarrow x=y=z=\dfrac{\sqrt{2}}{3}\)