ai giúp 1 tay nào...
Cho tg ABC. Xác định vị trí của diểm M trên cạnh BC sao cho tổng độ dài các khoảng cách từ B và C đến đường thẳng AM là lớn nhất
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
với tam giác ABC , cho góc B và góc C là góc nhọn
gọi d là tổng khoảng cách từ B và C đến đường thẳng AM, BD vuông góc AM , AH vuông góc BC..
ta có : giá trị lớn nhất của d = BC
<=> BD=BM ; CE=CM
<=> D trùng với M và E trùng với M
<=> M trùng với hình chiếu H của A trên BC
Vậy vị trí của M để có tổng các khoảng cách từ B và C đến AM lớn nhất là khi M trùng với hình chiếu H của A trên BC.
BH vuong goc voi AM=>BH=<BM
CE vuong goc voi AM=>CE=<CM
=>BH+CE=<BM+CM
=>d=<BC
Dau bang xay ra khi BH=BM; CE=CM
=>AM vuong goc voi BC
d = BH + CK
a) Ta có: BH là đoạn vuông góc kẻ từ B đến đường thẳng AM => BH là đoạn ngắn nhất kẻ từ B đến đường thẳng AM
M thuộc đường thẳng AM
=> BH \(\le\) BM (1)
Tương tự, ta có: CK là đoạn vuông góc kẻ từ C đến đường thẳng AM => CK là đoạn ngắn nhất kẻ từ C đến AM
=> CK \(\le\) CM (2)
Từ (1)(2) => d = BH + CK \(\le\) BM + CM = BC
Dấu "=" xảy ra khi dấu "=" ở (1) và (2) xảy ra <=> BH = BM và CK = CM
=> BM và CM vuông góc với AM => BC vuông góc với AM
Khi đó d = BC có giá trị lớn nhất
vậy Khi M là chân đường vuông góc hạ từ A xuống BC thì d lớn nhất