tìm dư của phép chia tổng 5^1 + 5^2 + 5^3 + ... + 5^2021 cho 31
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(7.8.9.10⋮2,⋮5\)
\(2.3.4.5.6⋮2,⋮5\)
31 ko chia hết 2, ko chia hết 5
=> 7.8.9.10 + 2.3.4.5.6 + 31 ko chia hết 2, không chia hết 5
b) 1.3.5.7.9 \(⋮\)5, ko chia hết 2
4100 \(⋮\)5 , \(⋮\)2
=> 1.3.5.7.9 + 4100 \(⋮\)5, ko chia hết 2
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=\left(1+5+5^2\right)+\left(5^3+5^4+5^5\right)+.....+\left(5^{30}+5^{31}+5^{32}\right)\)
\(A=31.1+31.5^3+......+31.5^{30}\)
\(A=31.\left(1+5^3+......+5^{30}\right)\)\
Vậy A chia hết cho 31 hay chia 31 dư 0
![](https://rs.olm.vn/images/avt/0.png?1311)
\(2021\equiv1\left(mod5\right)\\ \Leftrightarrow2021^{2022}\equiv1^{2022}=1\left(mod5\right)\\ \Leftrightarrow2021^{2022}+3\equiv1+3=4\left(mod5\right)\)
Vậy phép chia có dư là 4
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi tổng là S
\(S=1+\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{2007}+5^{2008}\right)\)
\(S=1+5.6+5^3.6+....+5^{2007}.6\)
\(S=1+6.\left(5+5^3+...+5^{2007}\right)\)
Vậy S chia 6 dư 1
\(S=\left(1+5+5^2\right)+\left(5^3+5^4+5^5\right)+....+\left(5^{2006}+5^{2007}+5^{2008}\right)\)
\(S=31.1+31.5^3+....+31.5^{2007}\)
\(S=31.\left(1+5^3+....+5^{2007}\right)\)
Vậy S chia hết cho 31 hay S chia 31 dư 0
![](https://rs.olm.vn/images/avt/0.png?1311)
A = 50 + 51 + 52 + 53 +...+5100 ( cs 101 so)
A = 50 +51 +( 52 + 53 + 54 )+( 55+56+57)+...+( 598 + 599 + 5100 )
A = 6+ 52.31 +55.31+...+598.31 chia 31 du 6
:)
![](https://rs.olm.vn/images/avt/0.png?1311)
Đặt \(S=1+5+5^2+5^3+5^4+...+5^9\)
\(\Leftrightarrow S=1+\left(5+5^2+5^3+5^4+...+5^9\right)\)
Đặt \(A=5+5^2+5^3+....+5^9\)
\(\Leftrightarrow A=\left(5+5^2+5^3\right)+\left(5^4+5^5+5^6\right)+\left(5^7+5^8+5^9\right)\)
\(\Leftrightarrow A=5\left(1+5+5^2\right)+5^4\left(1+5+5^2\right)+5^7\left(1+5+5^2\right)\)
\(\Leftrightarrow A=5\left(1+5+25\right)+5^4\left(1+5+25\right)+5^7\left(1+5+25\right)\)
\(\Leftrightarrow A=5\cdot31+5^4\cdot31+5^7\cdot31\)
\(\Leftrightarrow A=31\left(5+5^4+5^7\right)\)
=> A chia hết cho 31
Thay A=\(31\left(5+5^4+5^7\right)\)thay vào S ta có:
\(S=1+31\left(5+5^4+5^7\right)\)
=> S chia 31 dư 1
![](https://rs.olm.vn/images/avt/0.png?1311)
B=(5+52+53)+(54+55+56)+...+(557+558+559)
B=5.(1+5+52)+54(1+5+52)+...+557(1+5+52)
B=5.31+54.31+...+557.31
B=31.(5+54+...+557) luôn chia hết cho 31
vậy số dư trong phép chia B cho 31 là 0 (phép chia hết )