cho p/s A = n+19 / n+6 (n thuộc Z , n khác -6)
tìm n để A tlaf p/s tối giản
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phân số thì nhiều quá, tìm số nguyên n đi cho khỏe
Đặt \(Ư\left(n+9;n-6\right)=u\)
\(\Leftrightarrow n+9⋮u;n-6⋮u\)
\(\Leftrightarrow n+9-\left(n-6\right)⋮u\)
\(\Leftrightarrow n+9-n+6\div u\)
\(\Leftrightarrow15⋮u\)
\(\Leftrightarrow u\in\left\{1;3;5;15\right\}\)
Nếu u = 3 thì \(n+9⋮3\)
\(\Leftrightarrow n+9=3k\)
\(\Leftrightarrow n=3k-9\)
\(\Leftrightarrow n-6=3k-9-6⋮3\)
Nếu u = 5 thì \(n+9⋮5\)
\(\Leftrightarrow n+9=5k\)
\(\Leftrightarrow n=5k-9\)
\(\Leftrightarrow n-6=5k-9-6=5k-15⋮5\)
Vậy để phân số \(\frac{n+9}{n-6}\) là phân số tối giản thì \(n⋮̸3;5\)
Ta có : \(\frac{n-3}{n+1}=1-\frac{4}{n+1}\)
Vì 1 \(\in\) Z để A \(\in\) Z thì 4 chia hết cho n + 1 hay n+1 là ước của 4
\(\Rightarrow\) x + 1 = 1 \(\Rightarrow\) x = 0
x + 1 = -1 \(\Rightarrow\) x = -2
x + 1 = 2 \(\Rightarrow\) x = 1
x + 1 = -2 \(\Rightarrow\) x = -3
x + 1 = 4 \(\Rightarrow\) x = 3
x + 1 = -4 \(\Rightarrow\) x = -5
b, Để A là phân số tối giản thì:
x + 1 = 3 \(\Rightarrow\) x = 2