Tìm n thuộc z sao cho 7n+3 chia hết cho n+2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: 2n−3⋮n+12�−3⋮�+1
⇔−5⋮n+1⇔−5⋮�+1
⇔n+1∈{1;−1;5;−5}⇔�+1∈{1;−1;5;−5}
hay n∈{0;−2;4;−6}
2n-3 chia hết cho n+1
=> 2n+2-5 chia hết cho n+1
=> 2(n+1)-5 chia hết cho n+1
Mà 2(n+1) chia hết cho n+1 => 5 chia hết cho n+1
=> n+1 thuộc Ư(5) ={1;-1;5;-5}
TH1: n+1=1 => n=0 thuộc Z
TH2: n+1=-1 => n=-2 thuộc Z
TH3: n+1=5 => n=4 thuộc Z
TH4: n+1=-5 => n=-6 thuộc Z
=> n thuộc {0;-2;4;6}
\(n^2+7n+2=n\left(n+4\right)+3\left(n+4\right)-10\)
Để biểu thức chia hết thì \(n+4\inƯ\left(10\right)\)
Bạn tự giải tiếp nk.
a/ \(M=\frac{2n-7}{n-5}=\frac{2n-10+3}{n-5}=\frac{2\left(n-5\right)+3}{n-5}=\frac{2\left(n-5\right)}{n-5}+\frac{3}{n-5}\)
Để \(\frac{2n-7}{n-5}\) có giá trị nguyên thì \(3⋮\left(n-5\right)\)
=> \(n-5\inƯ\left(3\right)=\left(-3;-1;1;3\right)\)
Nếu n - 5 = -3 => n = -3 + 5 => n = 2
Nếu n - 5 = -1 => n = -1 + 5 => n = 4
Nếu n - 5 = 1 => n = 1 + 5 => n = 6
Nếu n - 5 = 3 => n = 3 + 5 => n = 8
Vậy \(n\in\left\{2;4;6;8\right\}\)
\(M=\frac{2n-7}{n-5}=\frac{2\left(n-5\right)-7+10}{n-5}=\frac{2\left(n-5\right)+3}{n-5}=2+\frac{3}{n-5}\)
Với n thuộc Z để M nguyên
\(\Leftrightarrow3⋮n-5\)
\(\Rightarrow n-5\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(\Rightarrow n\in\left\{5;4;8;2\right\}\)
Vậy...................................
\(3x+2⋮x-1\Rightarrow3\left(x-1\right)+5⋮x-1\)
\(\Rightarrow5⋮x-1\Rightarrow x-1\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
\(\Rightarrow x\in\left\{2;0;5;-4\right\}\)
Vậy............................
Bài làm:
a) Ta có: \(\hept{\begin{cases}4n-1⋮n-1\\n-1⋮n-1\end{cases}\Rightarrow\hept{\begin{cases}4n-1⋮n-1\\4n-4⋮n-1\end{cases}}}\)
\(\Rightarrow4n-1-\left(4n-4\right)⋮n-1\)
\(\Rightarrow3⋮n-1\)
\(\Rightarrow n-1\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\)
\(\Rightarrow n\in\left\{-2;0;2;4\right\}\)
Vậy \(n\in\left\{-2;0;2;4\right\}\)
b) Ta có: \(\hept{\begin{cases}n-1⋮n^2-2\\n^2-2⋮n^2-2\end{cases}\Rightarrow\hept{\begin{cases}n^2-n⋮n^2-2\\n^2-2⋮n^2-2\end{cases}}}\)
\(\Rightarrow n^2-2-\left(n^2-n\right)⋮n^2-2\)
\(\Rightarrow n-2⋮n^2-2\), mà ta có \(n-1⋮n^2-2\)
\(\Rightarrow n-1-\left(n-2\right)⋮n^2-2\)
\(\Rightarrow1⋮n^2-2\)
\(\Leftrightarrow n^2-2\inƯ\left(1\right)=\left\{-1;1\right\}\)
\(\Leftrightarrow n^2\in\left\{1;3\right\}\)
Mà nếu n2 = 3 thì n không là số nguyên
\(\Rightarrow n^2=1\Leftrightarrow\orbr{\begin{cases}n=1\\n=-1\end{cases}}\)
Vậy \(\orbr{\begin{cases}n=1\\n=-1\end{cases}}\)
Học tốt!!!!
Ta có:
n + 3 chia hết cho n + 3
n(n +3) chia hết cho n + 3
n^2 + 3n chia hết cho n + 3
n^2 + 7 chia hết cho n + 3
=> [(n^2 + 3n) - (n^2 + 7)] chia hết cho n + 3
3n - 7 chia hết cho n + 3
n + 3 chia hết cho n + 3
3(n + 3) chia hết cho n + 3
3n + 9 chia hết cho n + 3
=> [(3n + 9) - (3n - 7)] chia hết cho n + 3
16 chia hết cho n + 3
n + 3 thuộc U(16) = {-16 ; -8 ; -4 ; -2 ; -1 ; 1 ; 2; 4 ; 8 ; 16}
n thuộc {-19 ; -11 ; -7 ; -5 ; -4 ; -2 ; -1 ; 1 ; 5 ; 13}