K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 3 2015

đề sai, 2^2-1 ko chia hết cho 7

7 tháng 8 2016

Viết thế này dễ nhìn nefk (n+2)/(n-1) =(n-1+3)/(n-1) 
=1+3/(n-1) vì n+2 chia cho n-1 =1 dư 3/(n-1) 
để n+2 chia hết cho n-1 thì 3/(n-1) là số nguyên 
3/(n-1) nguyên khi (n-1) là Ước của 3 
khi (n-1) ∈ {±1 ; ±3} 
xét TH thôi : 
n-1=1 =>n=2 (tm) 
n-1=-1=>n=0 (tm) 
n-1=3=>n=4 (tm) 
n-1=-3=>n=-2 (loại) vì n ∈N 
Vậy tại n={0;2;4) thì n+2 chia hết cho n-1 
--------------------------------------... 
b, (2n+7)/(n+1)=(2n+2+5)/(n+1)=[2(n+1)+5]/(... 
2n+7 chia hêt cho n+1 khi 5/(n+1) là số nguyên 
khi n+1 ∈ Ước của 5 
khi n+1 ∈ {±1 ;±5} mà n ∈N => n ≥0 => n+1 ≥1 
vậy n+1 ∈ {1;5} 
Xét TH 
n+1=1=>n=0 (tm) 
n+1=5>n=4(tm) 
Vâyj tại n={0;4) thì 2n+7 chia hêt scho n+1 
--------------------------------------... 
Chúc bạn học tốt

7 tháng 8 2016

a/  N + 2 chia hết n - 1 

có nghĩa là \(\frac{n+2}{n-1}\) là số nguyên 

\(\frac{n+2}{n-1}=1+\frac{3}{n-1}\) muốn nguyên thì n-1 thuộc Ư(3)={-1,-3,1,3}

  • n-1=-1=>n=0
  • n-1=1=>n=2
  • n-1=-3=>n=-2
  • n-1=3=>n=4

do n thuộc N => cacsc gtri thỏa là {0,2,4}

b/  2n + 7 chia hết cho n+1 có nghĩa là : \(\frac{2n+7}{n+1}=2+\frac{5}{n+1}\)

là số nguyên 

để nguyên thì n+1 thuộc Ư(5)={1,5,-1,-5}

  • n+1=1=>n=0
  • n+1=-1=>n=-2
  • n+1=5=>n=4
  • n+1=-5=>n=-6

do n thuộc N nên : các giá trị n la : {0;4}

 

21 tháng 11 2015

đọc xong đề bài chắc chết mất 

17 tháng 1 2016

trời ơi những câu nào tương tự thì hỏi lmj hỏi 1 câu rồi tự làm tương tự!

24 tháng 6 2018

6   \(n^5+5n=n^5-n+6n=n\left(n^4-1\right)+6n=n\left(n^2-1\right)\left(n^2+1\right)+6n\)

\(=n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)+6n\)

vì n,n-1 là 2 số nguyên lien tiếp  \(\Rightarrow n\left(n-1\right)⋮2\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮2\)

  n,n-1,n+1 là 3 sô nguyên liên tiếp \(\Rightarrow n\left(n-1\right)\left(n+1\right)⋮3\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮3\)

\(\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮2\cdot3=6\)

\(6⋮6\Rightarrow6n⋮6\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)-6n⋮6\Rightarrow n^5+5n⋮6\)(đpcm)

7   \(n\left(2n+7\right)\left(7n+1\right)=n\left(2n+7\right)\left(7n+7-6\right)=7n\left(n+1\right)\left(2n+7\right)-6n\left(2n+7\right)\)

\(=7n\left(n+1\right)\left(2n+4+3\right)-6n\left(2n+7\right)\)

\(=7n\left(n+1\right)\left(2n+4\right)+21n\left(n+1\right)-6n\left(2n+7\right)\)

\(=14n\left(n+1\right)\left(n+2\right)+21n\left(n+1\right)-6n\left(2n+7\right)\)

n,n+1,n+2 là 3 sô nguyên liên tiếp dựa vào bài 6 \(\Rightarrow n\left(n+1\right)\left(n+2\right)⋮6\Rightarrow14n\left(n+1\right)\left(n+2\right)⋮6\)

\(21⋮3;n\left(n+1\right)⋮2\Rightarrow21n\left(n+1\right)⋮3\cdot2=6\)

\(6⋮6\Rightarrow6n\left(2n+7\right)⋮6\)

\(\Rightarrow14n\left(n+1\right)\left(n+2\right)+21n\left(n+1\right)-6n\left(2n+7\right)⋮6\)

\(\Rightarrow n\left(2n+7\right)\left(7n+1\right)⋮6\)(đpcm)

24 tháng 6 2018

......................?

mik ko biết

mong bn thông cảm 

nha ................

30 tháng 6 2018

\(a,n+2⋮n-1\)

\(\Rightarrow n-1+3⋮n-1\)

      \(n-1⋮n-1\)

\(\Rightarrow3⋮n-1\)

\(\Rightarrow n-1\inƯ\left(3\right)\)

\(\Rightarrow n-1\in\left\{-1;1;-3;3\right\}\)

\(\Rightarrow n\in\left\{0;2;-2;4\right\}\) mà n thuộc N

\(\Rightarrow n\in\left\{0;2;4\right\}\)

b, \(2n+7⋮n+1\)

\(\Rightarrow2n+2+5⋮n+1\)

\(\Rightarrow2\left(n+1\right)+5⋮n+1\)

     \(2\left(n+1\right)⋮n+1\)

\(\Rightarrow5⋮n+1\)

đến đây lm tp như phần a

30 tháng 6 2018

\(a,n+2⋮n-1\)

\(\Leftrightarrow\left(n-1\right)+3⋮n-1\)

Vì \(\hept{\begin{cases}n-1⋮n-1\\n+2⋮n-1\end{cases}\Rightarrow3⋮n-1\Leftrightarrow n-1\in}U\left(3\right)=\left\{-3;-1;1;3\right\}\)

\(\Rightarrow n\in\left\{-2;0;2;4\right\}\)

Mà \(n\in N\Rightarrow n\in\left\{0;2;4\right\}\)

Vậy \(n\in\left\{0;2;4\right\}.\)

\(b,2n+7⋮n+1\)

\(\Leftrightarrow2\left(n+1\right)+5⋮n+1\)

Vì \(\hept{\begin{cases}2\left(n+1\right)⋮n+1\\2n+7⋮n+1\end{cases}\Rightarrow}5⋮n+1\Leftrightarrow n+1\in U\left(5\right)=\left\{-5;-1;1;5\right\}\)

\(\Rightarrow n\in\left\{-5;-2;0;4\right\}\)

Mà \(n\in N\Rightarrow n\in\left\{0;4\right\}\)

Vậy \(n\in\left\{0;4\right\}.\)

28 tháng 12 2015

3n+2 chia hết cho n-1

=> 3n-3+5 chia hết cho n-1

=> 3.(n-1)+5 chia hết cho n-1

Mà 3(n-1) chia hết cho n-1

=> 5 chia hết cho n-1

=> n-1 \(\in\)Ư(5)={-5; -1; 1; 5}

=> n \(\in\){-4; 0; 2; 6}

n2+2n-7 chia hết cho n+2

=> n.(n+2)-7 chia hết cho n+2

=> 7 chia hết cho n+2

=> n+2 E Ư(7)={-7; -1; 1; 7}

=> n E {-9; -3; -1; 5}

10 tháng 11 2016

n + 3 chia hết cho n2 - 7

=> (n + 3)(n - 3) chia hết cho n2 - 7

=> n2 - 9 chia hết cho n2 - 7

=> n2 - 7 - 2 chia hết cho n2 - 7

Mà n2 - 7 chia hết cho n2 - 7

=> 2 chia hết cho n2 - 7

=> n2 - 7 ∈Ư(2) = {-1;1;-2;2}

Ta có bảng sau:

n2 - 7

-1

1

-2

2

n2

6

8

5

9

n

loại (vì n thuộc Z)

loại (vì n thuộc Z)

loại (vì n thuộc Z)

-3;3

Thử lại

loại

loại

loại

2 TH thỏa mãn

Vậy n ∈{3;-3}

10 tháng 2 2018

1)

x - 18 = 3x + 4

=> x - 3x = 4 + 18

=> -2x = 22

=> x = 22 : (-2)

=> x = -11

Vậy x = -11