Cho 2 phân số\(\frac{1}{n}\)và \(\frac{1}{n+1}\)(n\(\in\)Z, n>0) Chứng tỏ rằng tích của hai phân số này bằng hiệu của chúng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta co:1/n.1/n+1=1/n(n+1)=1/n^2+n;1/n-1/n+1=n+1/n(n+1)-n/n(n+1)=n+1-n/n^2+n=1/n^2+n
=>1/n.1/n+1=1/n-1/n+1
Ta có : 1/n-1/n+1=n+1/n.(n+1)-n/n.(n+1)=1/n.(n+1)
1/n.1/n+1=1/n(n+1)
=> hiệu của chúng = tích của chúng
\(\frac{1}{n}\)- \(\frac{1}{n+1}\)= \(\frac{n+1}{n\left(n+1\right)}\)- \(\frac{n}{n\left(n-1\right)}\)=\(\frac{n+1-n}{n\left(n+1\right)}\)= \(\frac{1}{n\left(n+1\right)}\)
=> \(\frac{1}{n\left(n+1\right)}\)= \(\frac{1}{n}\). \(\frac{1}{n+1}\)
\(\frac{1}{n}-\frac{1}{n+1}=\frac{n+1-n}{n.\left(n+1\right)}=\frac{1}{n.\left(n+1\right)}\)
\(\frac{1}{n}.\frac{1}{n+1}=\frac{1}{n.\left(n+1\right)}\)
Vậy \(\frac{1}{n};\frac{1}{n+1}\)có hiệu và tích bằng nhau
\(\frac{1}{n}\cdot\frac{1}{n+1}=\frac{1}{n\left(n+1\right)}\)
\(=\frac{\left(n+1\right)-n}{n\left(n+1\right)}\)
\(=\frac{n+1}{n\left(n+1\right)}-\frac{n}{n\left(n+1\right)}\)
\(=\frac{1}{n}-\frac{1}{n+1}\)(đpcm)
Cho mik xin tk
\(a)\)\(\frac{1}{n}\cdot\frac{1}{n+1}=\frac{1}{n(n+1)}\) ; \(\frac{1}{n}-\frac{1}{n+1}=\frac{n+1-n}{n(n+1)}=\frac{1}{n(n+1)}\)
\(b)A=\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{110}+\frac{1}{132}\)
\(A=\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}+\frac{1}{8\cdot9}+\frac{1}{9\cdot10}+\frac{1}{10\cdot11}+\frac{1}{11\cdot12}\)
\(=(\frac{1}{5}-\frac{1}{6})+(\frac{1}{6}-\frac{1}{7})+(\frac{1}{7}-\frac{1}{8})+(\frac{1}{8}-\frac{1}{9})+(\frac{1}{9}-\frac{1}{10})+(\frac{1}{10}-\frac{1}{11})+(\frac{1}{11}-\frac{1}{12})\)
\(=\frac{1}{5}-\frac{1}{12}=\frac{7}{60}\)
a) Ta có hiệu của chúng là:
\(\frac{1}{n}-\frac{1}{n+1}=\frac{n+1-n}{n\left(n+1\right)}=\frac{1}{n\left(n+1\right)}\left(1\right)\)
Mặt khác, ta lại có tích của chúng là:
\(\frac{1}{n}.\frac{1}{n+1}=\frac{1}{n\left(n+1\right)}\left(2\right)\)
Từ (1) và (2) suy ra: \(\frac{1}{n}-\frac{1}{n+1}=\frac{1}{n}.\frac{1}{n+1}\)
Vậy tích của hai phân số này bằng hiệu của chúng (hiệu của phân số lớn trừ phân số nhỏ)
b) \(\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{110}+\frac{1}{132}\)
\(=\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}+\frac{1}{10.11}+\frac{1}{11.12}\)
\(=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+....+\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}\)
\(=\frac{1}{5}-\frac{1}{12}=\frac{7}{60}\)
\(\frac{1}{n}\times\frac{1}{n+1}=\frac{1}{n}-\frac{1}{n+1}\)
\(\Leftrightarrow\frac{1}{n\left(n+1\right)}=\frac{n+1}{n\left(n+1\right)}-\frac{n}{n\left(n+1\right)}\)
\(\Leftrightarrow\frac{1}{n\left(n+1\right)}=\frac{1}{n\left(n+1\right)}\)(Luôn đúng)
sorry em mới học lớp 5
me too