Biết lim (\((\sqrt{n^2 +an+ 2020}-\sqrt[3]{ bn^3+6n^2+ 3n+ 2021})\)=0
Tính P= a2020 +b2021 -1
AI GIẢI ĐẦY ĐỦ (CÓ LỜI GIẢI) VÀ NHANH NHẤT SẼ ĐƯỢC NHIỀU LƯỢT TICK
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các số lẻ trong khoảng từ 2000 đến 2020 đều là hợp số bởi vì những số đó có nhiều hơn hai ước
1.
\(\lim\left(\sqrt{4n^2+2n+1}-\left(an-b\right)\right)=\lim\dfrac{4n^2+2n+1-\left(an-b\right)^2}{\sqrt{4n^2+2n+1}+an-b}\)
\(=\lim\dfrac{\left(4-a^2\right)n^2+\left(2+ab\right)n+1-b^2}{\sqrt{4n^2+2n+1}+an-b}\)
\(=\lim\dfrac{\left(4-a^2\right)n+2+ab+\dfrac{1-b^2}{n}}{\sqrt{4+\dfrac{2}{n}+\dfrac{1}{n^2}}+a-\dfrac{b}{n}}\)
- Nếu \(4-a^2\ne0\Rightarrow\) giới hạn đã cho đạt giá trị dương vô cực \(\Rightarrow\) ktm
\(\Rightarrow4-a^2=0\Rightarrow\left[{}\begin{matrix}a=2\\a=-2\end{matrix}\right.\)
- Với \(a=-2\Rightarrow\lim\dfrac{\left(4-a^2\right)n+2+ab+\dfrac{1-b^2}{n}}{\sqrt{4+\dfrac{2}{n}+\dfrac{1}{n^2}}+a-\dfrac{b}{n}}=-\infty\) (ktm)
- Với \(a=2\Rightarrow\lim\dfrac{\left(4-a^2\right)n+2+ab+\dfrac{1-b^2}{n}}{\sqrt{4+\dfrac{2}{n}+\dfrac{1}{n^2}}+a-\dfrac{b}{n}}=\dfrac{2+2b}{4}\)
\(\Rightarrow\dfrac{b+1}{2}=1\Rightarrow b=1\)
Vậy \(a=2;b=1\)
Câu 2 làm tương tự
a/ \(=lim\frac{\left(-\frac{2}{3}\right)^n+1}{-2.\left(-\frac{2}{3}\right)^n+3}=\frac{1}{3}\)
b/ \(=lim\frac{\left(2-\frac{1}{n}\right)\left(1+\frac{1}{n}\right)\left(3+\frac{4}{n}\right)}{\left(\frac{5}{n}-6\right)^3}=\frac{2.1.3}{\left(-6\right)^3}=-\frac{1}{36}\)
c/ \(=lim\frac{5n+3}{\sqrt{n^2+5n+1}+\sqrt{n^2-2}}=\frac{5+\frac{3}{n}}{\sqrt{1+\frac{5}{n}+\frac{1}{n^2}}+\sqrt{1-\frac{2}{n}}}=\frac{5}{1+1}=\frac{5}{2}\)
d/ \(=lim\frac{5.\left(\frac{1}{2}\right)^n-6}{4.\left(\frac{1}{3}\right)^n+1}=\frac{-6}{1}=-6\)
e/ \(=-n^3\left(2+\frac{3}{n}-\frac{5}{n^2}+\frac{2020}{n^3}\right)=-\infty.2=-\infty\)
Đặt quả cân 5 cân vào bên trái và đặt quả cân 1 cân vào bên phải rồi đổ đường vào bên phài sao cho hai bên bằng nhau
Như vậy lấy quả cân ra thi ta được 4 cân đường
Đặt 4 cân dường vào bên phải vã đặt quả cân 1 cân rồi đổ đường vào cân bên phải sao cho hai bên bằng nhau
Như vậy sau 2 lần cân ta dược 3 cân đường
Lần 1: Đặt 2 quả cân 1kg và 2kg lên đĩa cân bên phải sau đó đổ đường sang đĩa cân bên trái sao cho cân thăng bằng => Ta lấy được 6kg đường
Lần 2: San đều 6kg đường lấy được lên 2 đĩa sao cho cân thăng bằng => Ta lấy được: 6/2 = 3kg đường
Có gì không hiểu cứ hỏi lại tớ nhé! Chúc bạn học tốt~~
Thực ra bạn có thể làm nếu thấy hợp lý mình sẽ nhờ GV môn sinh check lần nữa và mình sẽ trao coin :<
\(=\lim\limits\dfrac{n^2+an+2020-n^2}{\sqrt{n^2+an+2020}+n}+\lim\limits\dfrac{n^3-bn^3-6n^2-3n-2021}{n^2+\sqrt[3]{\left(bn^3+6n^2+3n+2021\right)^2}+n\sqrt[3]{bn^3+6n^2+3n+2021}}\)
\(=\lim\limits\dfrac{\dfrac{an}{n}+\dfrac{2020}{n}}{\sqrt{\dfrac{n^2}{n^2}+\dfrac{an}{n^2}+\dfrac{2020}{n^2}}+\dfrac{n}{n}}+\lim\limits\dfrac{\dfrac{\left(1-b\right)n^3}{n^2}-\dfrac{6n^2}{n^2}-\dfrac{3n}{n^2}-\dfrac{2021}{n^2}}{\dfrac{n^2}{n^2}+\dfrac{\sqrt[3]{\left(bn^3+6n^2+3n+2021\right)^2}}{n^2}+\dfrac{n\sqrt[3]{bn^3+6n^2+3n+2021}}{n^2}}\)
\(=\dfrac{1}{2}a+\lim\limits\dfrac{\left(1-b\right)n-6}{1+\sqrt[3]{b^2}+\sqrt[3]{b}}\)
De gioi han bang 0 thi \(\left(1-b\right)=0\Leftrightarrow b=1\Rightarrow\lim\limits\dfrac{\left(1-b\right)n-6}{1+\sqrt[3]{b^2}+\sqrt[3]{b}}=-\dfrac{6}{3}=-2\)
\(\Rightarrow\dfrac{1}{2}a-2=0\Leftrightarrow a=4\)
\(\Rightarrow P=4^{2020}+2^{2021}-1\)
P/s: Tổng này hỏi có bao nhiêu chữ số thì tui còn tìm được, chứ viết hẳn ra thì..chắc nhờ siêu máy tính của nasa :v