Chứng minh (a^2+b^2)/2>=a+b-1 với mọi a,b
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. (a+b)^2 ≥ 4ab
<=> a2+2ab+b2≥ 4ab
<=> a2+2ab+b2-4ab≥ 0
<=> a2-2ab+b2≥ 0
<=> (a-b)^2 ≥ 0 ( luôn đúng )
2. a^2 + b^2 + c^2 ≥ ab + bc + ca
<=> 2a^2 + 2b^2 + 2c^2 ≥ 2ab + 2bc + 2ca
<=> 2a^2 + 2b^2 + 2c^2 - 2ab - 2bc - 2ca ≥ 0
<=> (a^2- 2ab+b^2) + (b^2-2bc+c^2) + (c^2-2ca+a^2) ≥ 0
<=> (a-b)^2 + (b-c)^2 + (c-a)^2 ≥ 0 ( luôn đúng)
\(1.CMR:\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\ge4\)
\(\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)=1+\frac{b}{a}+\frac{a}{b}+1=\frac{a}{b}+\frac{b}{a}+2\)
Áp dụng BĐT AM-GM ta có:
\(\frac{a}{b}+\frac{b}{a}\ge2\sqrt{\frac{a}{b}.\frac{b}{a}}=2\)
\(\Rightarrow\frac{a}{b}+\frac{b}{a}+2\ge2+2=4\)
Dấu '' = '' xảy ra khi \(a=b\)
\(2.\\ a.CMR:a^2+2b^2+c^2-2ab-2bc\ge0\forall a,b,c\)
\(a^2+2b^2+c^2-2ab-2bc=a^2-2ab+b^2+c^2-2bc+b^2=\left(a-b\right)^2+\left(b-c\right)^2\ge0\forall a,b,c\)
Dấu '' = '' xảy ra khi \(a=b=c\)
\(b.CMR:a^2+b^2-4a+6b+13\ge0\forall a,b\)
\(a^2+b^2-4a+6b+13=\left(a^2-4a+4\right)+\left(b^2+6b+9\right)=\left(a-2\right)^2+\left(b+9\right)^2\ge0\forall a,b\)
Dấu '' = '' xảy ra khi \(\left\{{}\begin{matrix}a=2\\b=-9\end{matrix}\right.\)
\(\Leftrightarrow2a^2+2b^2+2\ge2ab+2a+2b\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2a+1\right)+\left(b^2-2b+1\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(a-1\right)^2+\left(b-1\right)^2\ge0\)(đúng)
Dấu bằng xảy ra khi \(a=b=1\)
Lời giải:
$a^2+b^2+1011-(ab+a+b)=\frac{2a^2+2b^2+2022-2ab-2a-2b}{2}$
$=\frac{(a^2-2ab+b^2)+(a^2-2a+1)+(b^2-2b+1)+2020}{2}$
$=\frac{(a-b)^2+(a-1)^2+(b-1)^2+2020}{2}$
$\geq \frac{2020}{2}>0$
$\Rightarrow a^2+b^2+1011> ab+a+b$
Ta có đpcm.