giải hệ pt \(\int^{x^3+2xy^2+12y=0}_{x^2+8y^2=12}\)
(câu này mk ra rùi các cậu giúp mk câu dưới nha)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài này chỉ cần thay biểu thức dưới vào biểu thức trên là xong đó
\(1.\left(x\ne\pm1\right)\Rightarrow pt\Leftrightarrow\left(x-m\right)\left(x-1\right)=\left(x+1\right)\left(x-2\right)\)
\(\Leftrightarrow x^2-x\left(m+1\right)+m=x^2-x-2\)
\(\Leftrightarrow-x\left(m+1\right)+m=-x-2\)
\(\Leftrightarrow x=\dfrac{m+2}{m}\left(m\ne0\right)\)
\(pt-có-ngo-duy-nhất\Leftrightarrow\left\{{}\begin{matrix}\dfrac{m+2}{m}\ne1\\\dfrac{m+2}{m}\ne-1\end{matrix}\right.\)\(\Leftrightarrow m\ne-1\)
\(\Rightarrow\left\{{}\begin{matrix}m\ne0\\m\ne-1\end{matrix}\right.\)
\(2.\left\{{}\begin{matrix}x^2+8y^2=12\left(1\right)\\x^3+2xy^2+12y=0\left(2\right)\end{matrix}\right.\)
\(\left(2\right)\Leftrightarrow x^3+2xy^2+y\left(x^2+8y^2\right)=0\)
\(\Leftrightarrow\left(x+2y\right)\left(x^2-xy+4y^2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-2y\left(3\right)\\x^2-xy+4y^2=\left(x-\dfrac{y}{2}\right)^2+\dfrac{15}{4}y^2=0\left(4\right)\end{matrix}\right.\)
\(\left(3\right)\left(1\right)\Rightarrow4y^2+8y^2=12\Leftrightarrow\left[{}\begin{matrix}y=1\Rightarrow x=-2\\y=-1\Rightarrow x=2\end{matrix}\right.\)
với \(x=y=0\) không là nghiệm của hệ pt
với \(x=y\ne0\Rightarrow\left(4\right)>0\Rightarrow\left(4\right)-vô-nghiệm\)
\(\Rightarrow\left(x;y\right)=\left\{\left(-2;1\right);\left(2;-1\right)\right\}\)
\(1,\Leftrightarrow\left(x-m\right)\left(x-1\right)=x^2-x-2\\ \Leftrightarrow x^2-x-mx+m-x^2+x+2=0\\ \Leftrightarrow mx=m+2\)
PT có nghiệm duy nhất \(\Leftrightarrow m\ne0\)
\(2,\Leftrightarrow\left\{{}\begin{matrix}x^2y+8y^3=12y\\x^3+2xy^2+12y=0\end{matrix}\right.\)
Thế \(PT\left(1\right)\rightarrow PT\left(2\right)\Leftrightarrow x^3+2xy^2+x^2y+8y^3=0\)
\(\Leftrightarrow\left(x+2y\right)\left(x^2-2xy+4y^2\right)+xy\left(x+2y\right)=0\\ \Leftrightarrow\left(x+2y\right)\left(x^2-xy+4y^2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-2y\\\left(x-\dfrac{1}{2}y\right)^2+\dfrac{15}{4}y^2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2y\\\left\{{}\begin{matrix}x-\dfrac{1}{2}y=0\\y^2=0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2y\\x=y=0\end{matrix}\right.\)
Thay \(x=y=0\Leftrightarrow0+0=12\left(loại\right)\)
Thay \(x=-2y\Leftrightarrow4y^2+8y^2=12y^2=12\Leftrightarrow\left[{}\begin{matrix}y=1\Rightarrow x=-2\\y=-1\Rightarrow x=2\end{matrix}\right.\)
Vậy \(\left(x;y\right)\in\left\{\left(-2;1\right);\left(2;-1\right)\right\}\)
Bạn tham khảo lời giải tại đây:
Câu hỏi của Nguyễn Thu Ngà - Toán lớp 9 | Học trực tuyến
a.
Thay số 12 từ pt trên xuống dưới:
\(x^3+2xy^2+y\left(x^2+8y^2\right)=0\)
\(\Leftrightarrow x^3+x^2y+2xy^2+8y^3=0\)
\(\Leftrightarrow\left(x+2y\right)\left(x^2-xy+4y^2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2y\\x=y=0\left(ktm\right)\end{matrix}\right.\)
Thế vào pt đầu:
\(\left(-2y\right)^2+8y^2=12\Leftrightarrow y^2=1\Rightarrow\left[{}\begin{matrix}y=1\Rightarrow x=-2\\y=-1\Rightarrow x=2\end{matrix}\right.\)
b.
Thế số 1 từ pt trên xuống dưới:
\(x^7+y^7=\left(x^4+y^4\right)\left(x^3+y^3\right)\)
\(\Leftrightarrow x^4y^3+x^3y^4=0\)
\(\Leftrightarrow x^3y^3\left(x+y\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\y=0\\y=-x\end{matrix}\right.\)
Thế vào pt đầu: \(\Rightarrow\left[{}\begin{matrix}y^3=1\\x^3=1\\x^3-x^3=1\left(vô-nghiệm\right)\end{matrix}\right.\)
Vậy nghiệm của hệ là: \(\left(x;y\right)=\left(1;0\right);\left(0;1\right)\)
Lời giải:
HPT $\Rightarrow x^3+2xy^2+y(x^2+8y^2)=0$
$\Leftrightarrow x^3+2xy^2+x^2y+8y^3=0$
$\Leftrightarrow (x^3+8y^3)+(2xy^2+x^2y)=0$
$\Leftrightarrow (x+2y)(x^2-2xy+4y^2)+xy(2y+x)=0$
$\Leftrightarrow (x+2y)(x^2-xy+4y^2)=0$
Dễ thấy $x,y$ không thể cùng đồng thời bằng $0$. Do đó $x^2-xy+4y^2>0$
$\Rightarrow x+2y=0$
$\Rightarrow x=-2y$. Thay vào PT $(1)$:
$(-2y)^2+8y^2=12\Leftrightarrow y^2=1$
$\Rightarrow y=\pm 1$
$\Rightarrow x=\mp 2$
Vậy...........
câu 1
a, 5x - x 2 + 2xy - 5y
= 5x - x 2 + xy + xy - 5y
= ( 5x - 5y ) - ( x2 - xy ) + xy
= 5 ( x-y ) - x(x-y ) + xy
= (5-x) ( x-y) + xy
mik làm dc mỗi câu a !
Câu hỏi của Ngu Người - Toán lớp 9 - Học toán với OnlineMath
Nãy có sửa đề xong làm rồi nhưng tưởng sai nên bỏ thấy cô Chi cmt nên tui cũng nghĩ là sai giờ làm nha!
Đề: \(\hept{\begin{cases}x^3+2xy^2+12y=0\\x^2+8y^2=12\end{cases}}\)
~~~~~~~ Bài làm ~~~~~~~
Ta thấy nếu hệ có nghiệm \(\left(x,y\right)\Rightarrow y\ne0\)Vì nếu \(y=0\Rightarrow\hept{\begin{cases}x^2=19\\x^3=0\end{cases}\left(vl\right)}\)
Khi: \(y\ne0\)thay \(12=x^2+8y^2\)vào pt sau:
\(x^3+2xy^2+y\left(x^2+8y^2\right)=0\)
\(\Leftrightarrow x^3+x^2y+2xy^2+8y^3=0\)
\(\Leftrightarrow\left(\frac{x}{y}\right)^3+\left(\frac{x}{y}\right)^2+2\left(\frac{x}{y}\right)+8=0\)
Đặt: \(t=\frac{x}{y}\Rightarrow t^3+t^2+2t+8=0\)
\(\Leftrightarrow\left(t+2\right)\left(t^2-t+4\right)=0\)
\(\Leftrightarrow t=-2\)(Vì \(t^2-y+4=\left(t-\frac{1}{2}\right)^2+\frac{15}{4}>0\))
Nên suy ra: \(x=-2y\)
Thay \(x=-2y\)vào pt thứ 2 ta được:
\(4y^2+8y^2=12\)
\(\Leftrightarrow y^2=1\)
\(\Leftrightarrow\orbr{\begin{cases}y=1\\y=-1\end{cases}}\)
Vậy hệ pt có 2 nghiệm \(\left(x,y\right)=\left(2;-1\right);\left(-2;1\right)\)
Em xem xem có bị nhầm đề không?. Trước kia cô từng thấy bài này nhưng mà \(8y^2\). Xem lại đề giúp cô nha!