tìm GTLN x+y+z(x+y)(x+z)(y+z) biết x,y,z >= 0 , x+y+z=1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
P=x/x+1 + y/y+1 + z/z+1=x+1-1/x+1 + y+1-1/y+1 + z+1-1/z+1
=1 - 1/x+1 + 1 - 1/y+1 + 1 - 1/z+1
=3 - (1/x+1 + 1/y+1 + 1/z+1)
Áp dụng bđt cauchy- schwarz dạng engel:
1/x+1 + 1/y+1 + 1/z+1 = 12/x+1 + 12/y+1 + 12/z+1 >/ (1+1+1)2/x+1+y+1+z+1 >/ 9/4 (do x+y+z=1)
=> P </ 3 - 9/4 = 3/4
maxP=3/4
\(P=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\le3-\frac{9}{x+y+z+3}=\frac{3}{4}\)
Đặt a = x + 1 > 0 ; b = y + 1 > 0 ; c = z + 4 > 0
a + b + c = 6
\(A=\frac{a-1}{a}+\frac{b-1}{b}+\frac{c-4}{c}=3-\left(\frac{1}{a}+\frac{1}{b}+\frac{4}{c}\right)\)
Theo Bất Đẳng Thức ta có: \(\left(\frac{1}{a}+\frac{1}{b}\right)+\frac{4}{c}\ge\frac{4}{a+b}+\frac{4}{c}\ge\frac{16}{a+b+c}=\frac{8}{3}\)
\(\Rightarrow A\le\frac{1}{3}\)Đẳng thức xảy ra khi và chỉ khi \(\hept{\begin{cases}a=b\\a+b=c\\a+b+c=6\end{cases}}\Leftrightarrow\hept{\begin{cases}a=b=\frac{3}{2}\\c=3\end{cases}\Leftrightarrow\hept{\begin{cases}x=y=\frac{1}{2}\\z=-1\end{cases}}}\)
Vậy MaxA = 1/3 khi \(\hept{\begin{cases}x=y=\frac{1}{2}\\z=-1\end{cases}}\)
https://olm.vn/hoi-dap/detail/88068471767.html
Có : \(P=\Sigma\frac{x}{x+1}\)
\(\Rightarrow3-P=\Sigma\left(1-\frac{x}{x+1}\right)\)
\(=\Sigma\frac{1}{x+1}\)
Áp dụng bđt \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\left(a,b,c>0\right)\)được
\(3-P=\Sigma\frac{1}{x+1}\ge\frac{9}{x+y+z+3}=\frac{9}{4}\)
\(\Rightarrow P\le3-\frac{9}{4}=\frac{3}{4}\)
Dấu "=" khi x = y = z = 1/3
GTLN=\(y=\frac{8}{9^3}\)