Câu 1 : tìm 5 đơn thức đồng dạng với các đơn thức sau : 2x^3y^7, 1x2a^2
Câu 2 : Tính : 3xy + 53xy -2xy tại x = 2 và y = 1
Câu 3 : Tìm bậc của đơn thức sau 4x^5y^4z^9t^3
Chúc các bạn may mắn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=2x3y4 ; hệ số là 2; bậc là 7
B=-1/4xy3z; hệ số là -1/4; bậc là 5
C=36x6y4z2; hệ số là 36; bậc là 12
D=2/15x5y3; hệ số là 2/15; bậc là 8
Bài làm:
a) Các đơn thức đồng dạng với nhau:
\(5x^2y\)và \(\frac{3}{2}x^2y\)
b) Ta có: \(B=-\frac{2}{3}xy^2.\left(-\frac{1}{2}x^2y\right)=\frac{1}{3}x^3y^3\)
=> Bậc đa thức B là 6
a) \(-xy\cdot2x^3y^4\cdot-\dfrac{5}{4}x^2y^3\)
\(=\left(-1\cdot2\cdot-\dfrac{5}{4}\right)\cdot\left(x\cdot x^3\cdot x^2\right)\cdot\left(y\cdot y^4\cdot y^3\right)\)
\(=\dfrac{5}{2}x^6y^8\)
Bậc là: \(6+8=14\)
Hệ số: \(\dfrac{5}{2}\)
Biến: \(x^6y^8\)
b) \(5xyz\cdot4x^3y^2\cdot-2x^5y\)
\(=\left(5\cdot4\cdot-2\right)\cdot\left(x\cdot x^3\cdot x^5\right)\cdot\left(y\cdot y^2\cdot y\right)\cdot z\)
\(=-40x^9y^4z\)
Bậc là: \(9+4=13\)
Hệ số: \(-40\)
Biến: \(x^9y^4z\)
c) \(-2xy^5\cdot-x^2y^2\cdot7x^2y\)
\(=\left(-2\cdot-1\cdot7\right)\cdot\left(x\cdot x^2\cdot x^2\right)\cdot\left(y^5\cdot y^2\cdot y\right)\)
\(=14x^6y^8\)
Bậc là: \(6+8=14\)
Hệ số: \(14\)
Biến: \(x^6y^8\)
a: =-2x^2y^3z^2
Hệ số: -2
bậc: 7
b: =-1/3x^3y^3
hệ số: -1/3
bậc: 6
c: =-1/2x^6y^5
hệ số: -1/2
bậc: 11
d: =-2/3x^3y^4
hệ số: -2/3
bậc: 7
e: =3/4x^3y^4
hệ số:3/4
bậc: 7
Câu 1 :
5 đơn thức đồng dạng với :
+ 2x3y7 : 4x3y7; -2x3y7; 345x3y7; -7x3y7; -12x3y7
+ 1x2a2 : Tương tự trên
Câu 2 :
3xy+53xy-2xy
=54xy
Tại x=2 và y=1, ta có :
54.2.1
=108
Câu 3 :
4x5y4z9t3
Bậc của đơn thức trên là : 21
#H