K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a,b: ΔOBC cân tại O

mà OH là đường cao

nên H là trung điểm của BC

Xét tứ giác OBAC có

H là trung điểm chung của OA và BC

OB=OC

Do đó: OBAC là hình thoi

=>OB=BA=OA

=>ΔOAB đều

=>góc BOA=60 độ

Xét ΔOBM vuông tại B có tan BOM=BM/BO

=>BM/6=tan 60

=>\(BM=6\sqrt{3}\left(cm\right)\)

c: Xét ΔOBM và ΔOCM có

OB=OC

góc BOM=góc COM

OM chung

Do đó: ΔOBM=ΔOCM

=>góc OCM=90 độ

=>MC là tiếp tuyến của (O)

24 tháng 12 2016

hằng lớp 9,ở Bảo Thanh phải k

AH
Akai Haruma
Giáo viên
31 tháng 12 2016

Đề số 7

a) Xét tam giác vuông $MBO$ vuông tại $B$ có đường cao $BH$:

\(\frac{1}{BH^2}=\frac{1}{MB^2}+\frac{1}{BO^2}=\frac{1}{BO^2-HO^2}\)\(\Rightarrow \frac{1}{MB^2}=\frac{1}{27}-\frac{1}{36}=\frac{1}{108}\Rightarrow MB=6\sqrt{3} (\text{cm})\)

b) Thấy rằng $BC$ là trung trực của $AO$ và $AO$ cũng là trung trực của $BC$ nên $BA=BO=OC=AC$

Mặt khác \(\cos(\widehat{BOH})=\frac{1}{2}\) nên \(\cos (\widehat{BOC})\neq 90^0\)

Do đó $OBAC$ là hình thoi

c) Vì $OA$ là trung trực của $BC$ nên với điểm $M\in OA$ thì $MB=MC$ suy ra \(\triangle MBO=\triangle MCO\Rightarrow \widehat {MBO}=\widehat{MCO}=90^0\Rightarrow MC\perp CO\)

Do đó $MC$ là tiếp tuyến của $(O)$

a: MB là tiếp tuyến của (O), B là tiếp điểm

nên MB\(\perp\)BO tại B

=>ΔBOM vuông tại B

b:

ΔOBH vuông tại H

=>\(BH^2+HO^2=BO^2\)

=>\(BH^2=5^2-3^2=16\)

=>BH=4(cm)

Xét ΔOBM vuông tại B có BH là đường cao

nên \(OH\cdot OM=OB^2\)

=>\(OM=\dfrac{5^2}{3}=\dfrac{25}{3}\left(cm\right)\)

 ΔOBM vuông tại B

=>\(OB^2+BM^2=OM^2\)

=>\(BM^2+5^2=\left(\dfrac{25}{3}\right)^2\)

=>\(BM^2=\dfrac{625}{9}-25=\dfrac{400}{9}\)

=>BM=20/3(cm)

c: ΔOBC cân tại O

mà OH là đường cao

nên OH là phân giác của \(\widehat{BOC}\)

Xét ΔOBM và ΔOCM có

OB=OC

\(\widehat{BOM}=\widehat{COM}\)

OM chung

Do đó: ΔOBM=ΔOCM

=>\(\widehat{OBM}=\widehat{OCM}=90^0\)

=>MC là tiếp tuyến của (O)

d: Xét tứ giác OBMC có

\(\widehat{OBM}+\widehat{OCM}=90^0+90^0=180^0\)

=>OBMC là tứ giác nội tiếp đường tròn đường kính OM

Tâm là trung điểm của OM