Tính nhanh
\(\dfrac{3}{2^2}.\dfrac{8}{3^2}.\dfrac{15}{4^2}...\dfrac{899}{30^2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{3}{2^2}.\dfrac{8}{3^2}.\dfrac{15}{4^2}.....\dfrac{899}{30^2}\)
\(A=\dfrac{1.3}{2.2}.\dfrac{2.4}{3.3}.\dfrac{3.5}{4.4}.....\dfrac{29.31}{30.30}\)
\(A=\dfrac{1.3.2.4.3.5.....29.31}{2.2.3.3.4.4.....30.30}\)
\(A=\dfrac{1.2.3.....29}{2.3.4....30}.\dfrac{3.4.5.....31}{2.3.4.....30}\)
\(A=\dfrac{1}{30}.\dfrac{31}{2}=\dfrac{31}{60}\)
\(B=\dfrac{8}{9}.\dfrac{15}{16}.\dfrac{24}{25}.....\dfrac{2499}{2500}\)
\(B=\dfrac{2.4}{3.3}.\dfrac{3.5}{4.4}.\dfrac{4.6}{5.5}.....\dfrac{49.51}{50.50}\)
\(B=\dfrac{2.4.3.5.4.6.....49.51}{3.3.4.4.5.5....50.50}\)
\(B=\dfrac{2.3.4......49}{3.4.5....50}.\dfrac{4.5.6.....51}{3.4.5....50}\)
\(B=\dfrac{2}{50}.\dfrac{51}{3}=\dfrac{17}{25}\)
Giải:
\(A=\dfrac{3}{2^2}.\dfrac{8}{3^2}.\dfrac{15}{4^2}.....\dfrac{899}{30^2}.\)
\(A=\dfrac{1.3}{2^2}.\dfrac{2.4}{3^2}.\dfrac{3.5}{4^2}.....\dfrac{29.31}{30^2}.\)
\(A=\dfrac{1.2.3.....29}{2.3.4.....30}.\dfrac{2.3.4.....31}{2.3.4.....30}.\)
\(A=\dfrac{1}{30}.31=\dfrac{30}{31}.\)
Vậy \(A=\dfrac{30}{31}.\)
\(G=\dfrac{3}{2^2}.\dfrac{8}{3^2}.\dfrac{15}{4^2}....\dfrac{899}{30^2}\)
\(G=\dfrac{1.3}{2.2}.\dfrac{2.4}{3.3}.\dfrac{3.5}{4.4}....\dfrac{29.31}{30.30}\)
\(G=\dfrac{1.3.2.4.3.5....29.31}{2.2.3.3.4.4....30.30}\)
\(G=\dfrac{1.2.3....29}{2.3.4....30}.\dfrac{3.4.5....31}{2.3.4....30}\)
G=\(\dfrac{1}{30}.\dfrac{31}{2}=\dfrac{31}{60}\)
\(G=\dfrac{3}{2^2}.\dfrac{8}{3^2}.\dfrac{15}{4^2}........................\dfrac{899}{30^2}\)
\(G=\dfrac{1.3}{2.2}.\dfrac{2.4}{3.3}.\dfrac{3.5}{4.4}................\dfrac{29.31}{30.30}\)
\(G=\dfrac{2.3.4...........30}{2.3.4.............30}.\dfrac{1.3.4..............31}{2.3.4.............30}\)
\(G=\dfrac{31}{2}\)
Tìm y:
-y:1/2-5/2=4+1/2
-y:1/2 = 4+1/2+5/2
-y:1/2 = 7
-y = 7.2
y = -14
Vậy y = -14
`f)(-2)/17 + 15/23 + (-15)/17 + 4/19 + 8/23`
`= (-2/17+ -15/17)+(15/23+8/23)+4/19`
`= -1+1+4/19`
`= 0 +4/19`
`= 0`
`g)(-1)/2 + 3/21 + (-2)/6 + (-5)/30`
`= (-1)/2 + 1/7 + (-1)/3 + (-1)/6`
`= (-21)/42 + 6/42 + (-14)/42 + (-7)/42`
`=(-36)/42`
`=(-6)/7`
f)\(-\dfrac{2}{17}+\dfrac{15}{23}+-\dfrac{15}{17}+\dfrac{4}{19}+\dfrac{8}{23}\)
\(=\left(-\dfrac{2}{17}+-\dfrac{15}{17}\right)+\left(\dfrac{15}{23}+\dfrac{8}{23}\right)+\dfrac{4}{19}\)
\(=-1+1+\dfrac{4}{19}\)
\(=0+\dfrac{4}{19}=\dfrac{4}{19}\)
g)\(-\dfrac{1}{2}+\dfrac{3}{21}+-\dfrac{2}{6}+-\dfrac{5}{30}\)
\(=-\dfrac{1}{2}+\dfrac{1}{7}+-\dfrac{1}{3}+-\dfrac{1}{6}\)
\(=\left(-\dfrac{1}{2}+-\dfrac{1}{3}+-\dfrac{1}{6}\right)+\dfrac{1}{7}\)
\(=-\dfrac{3+2+1}{6}+\dfrac{1}{7}\)
\(=\dfrac{1}{7}-1\)
\(=\dfrac{1}{7}-\dfrac{7}{7}=-\dfrac{6}{7}\)
\(\dfrac{1}{3}+\dfrac{2}{9}=\dfrac{3}{3\times3}+\dfrac{2}{9}=\dfrac{3}{9}+\dfrac{2}{9}=\dfrac{5}{9}\)
\(\dfrac{1}{2}+\dfrac{3}{8}=\dfrac{4}{2\times4}+\dfrac{3}{8}=\dfrac{4}{8}+\dfrac{3}{8}=\dfrac{7}{8}\)
\(\dfrac{5}{12}+\dfrac{2}{3}=\dfrac{5}{12}+\dfrac{2\times4}{3\times4}=\dfrac{5}{12}+\dfrac{8}{12}=\dfrac{13}{12}\)
\(\dfrac{5}{16}+\dfrac{3}{8}=\dfrac{5}{16}+\dfrac{3\times2}{8\times2}=\dfrac{5}{16}+\dfrac{6}{16}=\dfrac{11}{16}\)
\(\dfrac{4}{15}+\dfrac{3}{5}=\dfrac{4}{15}+\dfrac{3\times3}{5\times3}=\dfrac{4}{15}+\dfrac{9}{15}=\dfrac{13}{15}\)
\(\dfrac{8}{63}+\dfrac{7}{10}=\dfrac{8\times10}{63\times10}+\dfrac{7\times63}{10\times63}=\dfrac{80}{630}+\dfrac{441}{630}=\dfrac{521}{630}\)
1: \(=\dfrac{16}{15}\left(-\dfrac{4}{9}+\dfrac{3}{7}\right)+\dfrac{16}{15}\left(\dfrac{4}{7}-\dfrac{5}{9}\right)\)
\(=\dfrac{16}{15}\left(-\dfrac{4}{9}+\dfrac{3}{7}+\dfrac{4}{7}-\dfrac{5}{9}\right)=0\)
2: \(=\dfrac{29}{9}\left(15+\dfrac{4}{7}-8-\dfrac{1}{7}+\dfrac{15}{7}-\dfrac{1}{7}\right)\)
\(=\dfrac{20}{9}\cdot\left(7\cdot\dfrac{18}{7}\right)=\dfrac{20}{9}\cdot18=40\)
a: 4/9+3/7=28/63+27/63=55/63
3/4+7/24=18/24+7/24=25/24
1/3+2/9+4/27=9/27+6/27+4/27=19/27
b: 5/6-3/8=20/24-9/24=11/24
7/15-11/30=14/30-11/30=3/30=1/10
2/3+1/6-7/12
=8/12+2/12-7/12
=3/12=1/4
c: 18/25*15/6=15/25*18/6=3*3/5=9/5
30/49:6/7=30/49*7/6=210/294=5/7
1/2*3/4:6/5=3/8*5/6=15/48=5/16
d: 8*3/5:12/5=24/5*5/12=2
4:9/5:10/3=4*5/9*3/10=2/3
\(A=\dfrac{3}{4}\cdot\dfrac{8}{9}\cdot\dfrac{15}{16}\cdot...\cdot\dfrac{899}{900}\\ =\dfrac{1\cdot3}{2\cdot2}\cdot\dfrac{2\cdot4}{3\cdot3}\cdot\dfrac{3\cdot5}{4\cdot4}\cdot...\cdot\dfrac{29\cdot31}{30\cdot30}\\ =\dfrac{1\cdot2\cdot3\cdot...\cdot29}{2\cdot3\cdot4\cdot...\cdot30}\cdot\dfrac{3\cdot4\cdot5\cdot...\cdot31}{2\cdot3\cdot4\cdot...\cdot30}\\ =\dfrac{1}{30}\cdot\dfrac{31}{2}\\ =\dfrac{31}{60}\)
Vậy ...
\(\dfrac{3}{2^2}.\dfrac{8}{3^2}.\dfrac{15}{4^2}.....\dfrac{899}{30^2}\)
= \(\dfrac{1.3}{2.2}.\dfrac{2.4}{3.3}.\dfrac{3.5}{4.4}.....\dfrac{29.31}{30.30}\)
= \(\dfrac{1.3.2.4.3.5.....29.31}{2.2.3.3.4.4.....30.30}\)
=\(\dfrac{\left(1.2.3.....29\right).\left(3.4.5......31\right)}{\left(2.3.4......30\right).\left(2.3.4.....30\right)}\)
= \(\dfrac{1.31}{2.30}\)
= \(\dfrac{31}{60}\)
Ta có: \(\dfrac{3}{2^2}\cdot\dfrac{8}{3^2}\cdot\dfrac{15}{4^2}\cdot...\cdot\dfrac{899}{30^2}\)
\(=\dfrac{1\cdot3}{2\cdot2}\cdot\dfrac{2\cdot2^2}{3\cdot3}\cdot\dfrac{3\cdot5}{4\cdot4}\cdot...\cdot\dfrac{29\cdot31}{30\cdot30}\)
\(=\dfrac{\left(1\cdot2\cdot3\cdot...\cdot29\right)\cdot\left(3\cdot4\cdot5\cdot...\cdot31\right)}{\left(2\cdot3\cdot4\cdot...\cdot30\right)\left(2\cdot3\cdot4\cdot...\cdot30\right)}\)
\(=\dfrac{1\cdot31}{2\cdot30}=\dfrac{31}{60}\)