Cho góc vuông xOy có Oz là tia phân giác. Gọi M là điểm tùy ý trên tia Oz (M không trùng O). Từ M lần lượt kẻ các đường vuông góc với Ox tại A và vuông góc với Oy tại B. Trên đoạn AM lấy điểm I, trên MB lấy điểm K sao cho IO là phân giác của góc AIK. Số đo góc IOK là
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A nằm trên tia phân giác của góc xOy nên A cách đều OB và OC.
=>AB=AC. ABOC là hình vuông mà AB=AC => ABOC là hình vuông.
Trên tia Ox đặt điểm G sao cho BG=CE.
Dê dàng chứng minh tam giác ABG= tam giác ACE(c.g.c)
=> góc BGA = góc AEC
=>góc BAG= góc CAE
Mà góc CAE= góc EAD => 3 góc EAC,DAE,BAG bằng nhau.
Có góc BAD + góc DAE + góc EAC=90 độ; góc EAC + góc AEC = 90 độ
=> góc BAD + góc DAE= góc AEC
Mà góc DAE = góc BAG => góc BAG + góc BAD = góc GAD = góc AEC = góc DGA
=> Tam giác DGA cân tại D => DG=DA
=>DB+BG=DA
=>DA=DB+CE (đpcm)
góc BMO=góc HOK=góc BOM
=>ΔBMO cân tại B
=>K là trung điểm của OM
=>OK=KM
Xet ΔHOB vuông tại H và ΔKBO vuông tại K có
BO chung
góc HOB=góc KBO
=>ΔHOB=ΔKBO
=>OK=BH=MK
Bài 5:
a: Xét ΔABD và ΔAED có
AB=AE
\(\widehat{BAD}=\widehat{EAD}\)
AD chung
Do đó: ΔABD=ΔAED
Suy ra: DB=DE