K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 6 2019

Giải bài 3 trang 126 sgk Hình học 11 | Để học tốt Toán 11

a) Gọi N là giao điểm của EM và CD

Vì M là trung điểm của AB nên N là trung điểm của CD (do ABCD là hình thang)

⇒ EN đi qua G

⇒ S, E, M, G ∈ (α) = (SEM)

Gọi O là giao điểm của AC và BD

Ta có (α) ∩ (SAC) = SO

và (α) ∩ (SBD) = SO = d

b) Ta có: (SAD) ∩ (SBC) = SE

c) Gọi O' = AC' ∩ BD'

Ta có AC' ⊂ (SAC), BD' ⊂ (SBD)

⇒ O' ∈ SO = d = (SAC) ∩ (SBD)

25 tháng 10 2023
 

a) Dễ thấy S là một điểm chung của hai mặt phẳng (SAD) và (SBC).

Ta có:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

⇒ (SAD) ∩ (SBC) = Sx

Và Sx // AD // BC.

b) Ta có: MN // IA // CD

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Mà Giải sách bài tập Toán 11 | Giải sbt Toán 11 

(G là trọng tâm của ∆SAB) nên 

Giải sách bài tập Toán 11 | Giải sbt Toán 11 ⇒ GN // SC

SC ⊂ (SCD) ⇒ GN // (SCD)

c) Giả sử IM cắt CD tại K ⇒ SK ⊂ (SCD)

MN // CD ⇒

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Ta có:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

16 tháng 10 2023

a:

1: \(M\in SB\subset\left(SAB\right)\)

\(M\in\left(MNP\right)\)

Do đó: \(M\in\left(SAB\right)\cap\left(MNP\right)\)(1)

\(N\in AB\subset\left(SAB\right)\)

\(N\in\left(MNP\right)\)

Do đó: \(N\in\left(SAB\right)\cap\left(MNP\right)\left(2\right)\)

Từ (1),(2) suy ra \(\left(SAB\right)\cap\left(MNP\right)=MN\)

2:

\(M\in SB\subset\left(SBC\right);M\in\left(MNP\right)\)

=>\(M\in\left(SBC\right)\cap\left(MNP\right)\)(3)

\(P\in BC\subset\left(SBC\right);P\in\left(MNP\right)\)

=>\(P\in\left(SBC\right)\cap\left(MNP\right)\)(4)

Từ (3),(4) suy ra \(\left(SBC\right)\cap\left(MNP\right)=MP\)

3:

\(N\in AB\subset\left(ABC\right);N\in\left(MNP\right)\)

=>\(N\in\left(ABC\right)\cap\left(MNP\right)\)(5)

\(P\in BC\subset\left(ABC\right);P\in\left(MNP\right)\)

=>\(P\in\left(ABC\right)\cap\left(MNP\right)\left(6\right)\)

Từ (5),(6) suy ra \(\left(ABC\right)\cap\left(MNP\right)=NP\)

b: Xét ΔBAS có BN/BA=BM/BS

nên NM//AS

=>MN//(SAC)

23 tháng 5 2018

3 tháng 12 2021

+) Xét △ABC có MN là đường trung bình ⇒MN//AC

Mà MN∈ (SMN) ⇒AC// (SMN)

+) Xét △SMN có \(\dfrac{SG1}{SM}\)=\(\dfrac{SG2}{SN}\)=\(\dfrac{2}{3}\)( Tính chất trọng tâm)

⇒G1G2//MN  ⇒ G1G2//AC ( Vì AC//MN)

Mà AC∈(SAC) ⇒ G1G2// (SAC)

7 tháng 12 2021

cảm ơn nhiều ạ mặc dù e đã nộp bài :">