Tính giá trị của biểu thức :
\(S=1+2+5+14+...+\frac{3^{n-1}+1}{2}\) với \(n\in Z+\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
\(N=\left(x+y\right)\left(y+z\right)\left(x+z\right)\)
Ta có : \(x+y+z=0\Rightarrow x+y=-z;y+z=-x;x+z=-y\)
hay \(-z.\left(-x\right)\left(-y\right)=-zxy\)
mà \(xyz=2\Rightarrow-xyz=-2\)
hay N nhận giá trị -2
Bài 2 :
\(\frac{a}{b}=\frac{10}{3}\Rightarrow\frac{a}{10}=\frac{b}{3}\)Đặt \(a=10k;b=3k\)
hay \(\frac{30k-6k}{10k-9k}=\frac{24k}{k}=24\)
hay biểu thức trên nhận giá trị là 24
c, Ta có : \(a-b=3\Rightarrow a=3+b\)
hay \(\frac{3+b-8}{b-5}-\frac{4\left(3+b\right)-b}{3\left(3+b\right)+3}=\frac{-5+b}{b-5}-\frac{12+4b-b}{9+3b+3}\)
\(=\frac{-5+b}{b-5}-\frac{12+3b}{6+3b}\)quy đồng lên rút gọn, đơn giản rồi
1.Ta có:\(x+y+z=0\)
\(\Rightarrow\hept{\begin{cases}x+y=-z\\y+z=-x\\x+z=-y\end{cases}}\)
\(\Rightarrow N=\left(x+y\right)\left(y+z\right)\left(x+z\right)=\left(-z\right)\left(-x\right)\left(-y\right)=-2\)
2.Ta có:\(\frac{a}{b}=\frac{10}{3}\Rightarrow\frac{a}{10}=\frac{b}{3}\)
Đặt \(\frac{a}{10}=\frac{b}{3}=k\Rightarrow a=10k;b=3k\)
Ta có:\(A=\frac{3a-2b}{a-3b}=\frac{3.10k-2.3k}{10k-3.3k}=\frac{30k-6k}{10k-9k}=\frac{k\left(30-6\right)}{k\left(10-9\right)}=24\)
Vậy....
\(B=\frac{-7}{1+n},n\in Z,n\ne-1\)
Để B nhận gt nguyên => \(-7⋮1+n\)
=> \(1+n\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
Ta có bảng sau :
1+n | 1 | -1 | 7 | -7 |
n | 0 | -2 | 6 | -8 |
Vậy ...
\(B=\frac{-7}{1+n}\left(n\inℤ;\ne-1\right)\)
Để \(\frac{-7}{1+n}\)nguyên thì \(-7⋮1+n\)
\(\Rightarrow1+n\inƯ\left(7\right)=\pm1;\pm7\)
Nếu 1 + n = 1 => n = 0 (thỏa mãn)
1 + n = -1 => n = -2 (thỏa mãn)
1 + n = 7 => n = 6 (thỏa mãn)
1 + n = -7 => n = -8 (thỏa mãn)
Vậy n = {0;-2;2;-4} thì \(\frac{-7}{1+n}\)nguyên
\(S=1+2+5+14+...+\frac{3^{n-1}+1}{2}\left(n\in N\right)\)
\(2S=2+4+10+28+...+\left(3^{n-1}+1\right)=S_1\)
\(2S=\left[1+1+1+...+n\right]+\left[1+3+9+...+3^{n-1}\right]\)
\(S_1=1+1+1+...+n=n\)
\(S_2=3+9+...+3^n\)
\(3S_2-S_2=2S_2=3^n-1\Rightarrow S_2=\frac{3^n-1}{2}\)
\(S=\frac{S_1+S_2}{2}=\frac{n+\frac{3^n-1}{2}}{2}=\frac{3^n+2n-1}{4}\)
Có 1 = \(\frac{3^0+1}{2}\)
2 = \(\frac{3^1+1}{2}\)
5 = \(\frac{3^2+1}{2}\)
14 = \(\frac{3^3+1}{2}\)
.......
=> S = \(\frac{3^0+1}{2}+\frac{3^1+1}{2}+\frac{3^2+1}{2}+\frac{3^3+1}{2}+...+\frac{3^{n-1}+1}{2}\)
S = \(\frac{\left(3^0+3^1+3^2+3^3+...+3^{n-1}\right)+\left(1+1+1+1+...+1\right)}{2}\)
S = \(\frac{\left(3^0+3^1+3^2+3^3+...+3^{n-1}\right)+1.n}{2}\)
S = \(\frac{\left(3^0+3^1+3^2+3^3+...+3^{n-1}\right)+n}{2}\)
Đặt A = 30 + 31 + 32 + 33 +....+ 3n-1
=> 3A = 31 + 32 + 33 +....+ 3n
=> 2A = 3A - A = 3n - 30
=> A = \(\frac{3^n-1}{2}\)
Thay A vào S, ta có:
S = \(\frac{\frac{3^n-1}{2}+n}{2}\)
=> S = \(\frac{3^n-1}{4}+\frac{n}{2}\)
Hồ Thu Giang à, trong 4 đáp án ở bài Cóc vàng tài ba đó ko có cái này !